Journal of Hydrology 552 (2017) 341-350

Contents lists available at ScienceDirect

Journal of Hydrology

journal homepage: www.elsevier.com/locate/jhydrol

Estimation of GRACE water storage components by temporal decomposition

Robert Andrew^{a,*}, Huade Guan^{a,b}, Okke Batelaan^{a,b}

^a School of the Environment, Flinders University, Australia ^b National Centre for Groundwater Research and Training, Australia

ARTICLE INFO

Article history: Received 25 August 2016 Received in revised form 2 June 2017 Accepted 10 June 2017 Available online 13 June 2017 This manuscript was handled by Tim R. McVicar, Editor-in-Chief, with the assistance of Di Long, Associate Editor

Keywords: GRACE Wavelet analysis Soil moisture Groundwater storage Decomposition Stepwise regression

1. Introduction

ABSTRACT

The Gravity Recovery and Climate Experiment (GRACE) has been in operation since 2002. Water storage estimates are calculated from gravity anomalies detected by the operating satellites and although not the true resolution, can be presented as 100 km \times 100 km data cells if appropriate scaling functions are applied. Estimating total water storage has shown to be highly useful in detecting hydrological variations and trends. However, a limitation is that GRACE does not provide information as to where the water is stored in the vertical profile. We aim to partition the total water storage from GRACE into water storage components. We use a wavelet filter to decompose the GRACE data and partition it into various water storage components including soil water and groundwater. Storage components from the Australian Water Resources Assessment (AWRA) model are used as a reference for the decompositions of total storage data across Australia. Results show a clear improvement in using decomposed GRACE data instead of raw GRACE data when compared against total water storage outputs from the AWRA model. The method has potential to improve GRACE applications including a means to test various large scale hydrological models as well as helping to analyse floods, droughts and other hydrological conditions.

as wavelet decomposition.

© 2017 Elsevier B.V. All rights reserved.

The Gravity Recovery and Climate Experiment (GRACE) has been in operation since 2002. Although it was originally planned to be a 5 year mission (Tapley et al., 2004), it still runs today (2017). Obtained monthly observations of the Earth's gravity field are spatially correlated with water on the Earth's surface and in subsurface layers, allowing estimations of total water storage (TWS) expressed as equivalent water thickness to be derived (Reager et al., 2015). TWS is the sum of all water stored in a GRACE cell regardless of how or where it is stored, i.e. surface water, soil water, groundwater and vegetation-bound water are all together in one TWS value (Rodell and Famiglietti, 2001). In recent years, GRACE TWS data has been used widely in many studies across many fields of science. GRACE is now a valued tool for scientists in a number of earth science fields (Wouters et al., 2014). It has been well validated against in situ, modelled and remotely sensed data (Seoane et al., 2013; Awange et al., 2011; Döll et al., 2014; Long et al., 2015a, 2017). A summary of relevant literature regard-

E-mail address: robert.andrew@flinders.edu.au (R. Andrew).

Measuring the variability in water storage across Australia has long proven to be a challenge (Cruetzfeldt et al., 2012). With limited water resources across the country (Chiew et al., 2011), it is important to understand where water is stored so that the best strategic water management actions can be applied. Hydrological models play an important role in water storage estimation across Australia. Physically based models are generally most relevant at the basin scale (Ragettli and Pellicciotti, 2012), where an appropriate amount of in situ data are more easily collected. There is a need for reliable estimates of various water storage components that can be easily applied and which have little or no dependence on field data collection.

ing the estimation of individual or multiple water storage for varying applications using GRACE TWS is presented in Table 1.

and other sciences, it has limitations (Awange et al., 2009) and the

ability to only estimate vertically integrated terrestrial water stor-

age is a particular one. Partitioning of these TWS values into indi-

vidual or smaller storage components would enhance the potential

of GRACE applications. Although, Yeh et al. (2006) used GRACE to

measure only a single component, groundwater, there are no doc-

umented method to comprehensively 'partition' GRACE data into

multiple desired water storage components using a technique such

While GRACE has proven to be a very useful tool for hydrology

Research papers

^{*} Corresponding author at: School of the Environment, Flinders University, Bedford Park, Australia.

Table 1

A summary of relevant literature in the field of estimating individual or multiple water storage components for varying applications using GRACE TWS.

Study	Relevant Aims	Study duration and size	Method/Approach	Major outcomes related to this study
Eicker et al.	Isolating and removing the	2003-2012	Contributions of El Nino to GRACE TWS are	El Nino explains roughly 24% of non seasonal
(2016)	contribution of El Nino on	Global	discovered using an independent component	variations and more accurate TWS estimations
Provide Hand	GRACE data	2002 2010	analysis, then removed from GRACE TWS	are given after its removal
Famiglietti	component of CRACE TWS	2003–2010, California	medalled soil moisture values are subtracted from	Groundwater depiction close to previous model
(2011)	to better monitor depletion	$154000{\rm km}^2$	GRACE TWS to isolate groundwater estimations	based estimates
Feng et al.	Estimate the groundwater	2003-2010,	Simulated soil moisture changes are removed from	Groundwater depletion in deep aquifers is
(2013)	component of GRACE TWS to better monitor depletion	Northern China, 370,000 km ²	GRACE TWS to obtain groundwater estimates	similar to what was previously estimated
Forootan	Separate GRACE TWS	2002–2012,	An independent component analysis is applied to	Spatially independent patterns are extracted
et al.	signals from those of the	Australia	GRACE TWS data	from GRACE TWS data using the independent
(2012)	surrounding ocean	2002 2000	An independent component analysis based filter is	component analysis
riappair et al	oceanic and terrestrial	2002-2009, Clobal	All independent component analysis based inter is used to partition CRACE into subcomponents	effective method for separating TWS from poise
(2011)	water storage from noise	Global	used to partition Grace into subcomponents	circerve method for separating 1 wo nom horse
Houborg	Improve drought indicators	2002-2009,	GRACE observations are assimilated into a climate	The model shows a modest but statistically
et al.	by decomposing TWS into	North America	land surface model	significant improvement in groundwater and
(2012)	different vertical			soil moisture estimations
T - L L	components	2000 2000	CRACE TRUC is used also wide herdeals visal	CDACE TIME to a de constate d'alte te a la sin
Ledianc	drought and its impact on	2000–2008, Murray Darling	GRACE TWS IS used alongside hydrological observations and land surface models to bein infer	GRACE I WS trends correlate highly to a dasin
(2009)	multiple water stores	Basin ~ 1	drought severity	groundwater soil moisture and surface water
		million km ²		GRACE helps to provide integrated drought observations
Long et al.	Improve estimations of	2003-2013,	GRACE is used in conjunction with constrained	The method produces results more consistent
(2016)	groundwater depletion by	Northwest	forward modelling and soil moisture storage from	with in ground measurements, and previous
	coupling GACE with other	India Aquifer	GLDAS-1 Noah is subtracted	estimates of groundwater depletion in the area
	techniques	~438,000 km ²		may have been overestimated in the area
Reager	State disaggregation of the	2002-2014, Northern Plains	GRACE observations are assimilated into a climate	Groundwater and root zone soll moisture
(2015)	vertically-integrated 1005	of the USA		generally agree with field observations
Rodell	Estimate the groundwater	2002-2005,	Estimations of soil moisture and snow are subtracted	Groundwater estimates from GRACE compare
et al.	component of GRACE TWS	Mississippi,	from GRACE TWS to estimate groundwater storage	favourably to 58 monitored wells around the
(2006)		900,000 km ²	changes	study area
Schrama	To identify signals and	2003-2006	An empirical orthogonal function approximation	Errors in GRACE data are significantly larger
et al.	noise in GRACE potential	Global	method to extract the most significant eigenvectors	than simulated background model errors
(2007)	coefficient sets			pressure models
Swenson	Estimate the groundwater	2002-2006.	Soil moisture is estimated over the area using a	Results align well with measurements from
et al.	component of GRACE TWS	Oklahoma over	network of soil moisture probes. This is subtracted	local groundwater wells showing relative inter-
(2008)	-	280,000 km ²	from GRACE TWS to give regional groundwater	annual variability
			estimates	
Syed et al.	GRACE TWS is partitioned	2002–2004,	GRACE is assimilated with NOAH land surface model	GRACE based storage estimates agree with
(2008)	into snow, soli and canopy	GIODAI		modelled estimates
Yeh et al	Estimate the groundwater	2002-2005	Soil moisture is subtracted from GRACE TWS to	Groundwater estimations perform relatively
(2006)	component of GRACE TWS	Illinois.	estimate groundwater. Uniquely (at the time) only	well against well based observations $r^2 = 0.63$
	to better monitor storage	200,000 km ²	in situ measurements soil moisture measurements	5
			are used, not models	
This study	Decompose GRACE TWS	2002–2013,	Wavelet decomposition is used to provide new	For each of the desired components (shallow
	into shallow soil water and	Australia,	storage estimations based on stepwise regression	soil water and deep soil water + groundwater)
	deep soil water	650,000 km²	and a reference model as opposed to subtracting TWS	the method provides estimates which perform
	' groundwater		components	alone

In this paper, we aim to develop a partitioning method for estimating different vertical water storage components of GRACE TWS data. These components include, but are not limited to (1) shallow soil moisture and (2) deep soil moisture and unconfined aquifer water storage. We propose to use wavelet analysis to decompose GRACE TWS data, based on the assumption that soil moisture and groundwater at different depths have different temporal characteristics. The idea is that a wavelet analysis can decompose a time series into various temporal frequencies ranging from short (monthly) to long (seasonal - biannual), relative to the original time series (Wang and Ding, 2003). Decomposed GRACE data are statistically compared to the Australian Water Resources (AWRA) Model with the hypothesis that different combinations of decomposed temporal components correlate well to different storage components in the AWRA model and can be used to formulate storage estimations.

2. Data

2.1. GRACE data

We use GRACE total water storage (TWS) data from The University of Texas Centre for Space Research (CSR), which can be freely downloaded from the GRACE Tellus website (http://grace.csr.nasa.gov/data/get-data/). Data has already been post-processed (Swenson and Wahr, 2006). Signal attenuation and leakage errors are mitigated by applying the scaling functions provided by Landerer and Swenson (2012). We used the monthly time series of TWS from March 2003 to December 2014. The data are presented spatially in 100 km by 100 km grid cells. We selected which cells should be included based on a shape file of Australia. If at least two thirds of the cell was part of the continent they were included, this eliminated some cells which covered only a small coastal part. Download English Version:

https://daneshyari.com/en/article/5771164

Download Persian Version:

https://daneshyari.com/article/5771164

Daneshyari.com