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It is extremely important for ensemble based actual evapotranspiration assimilation (AETA) to accurately
sample the uncertainties. Traditionally, the perturbing ensemble is sampled from one prescribed multi-
variate normal distribution (MND). However, MND is under-represented in capturing the non-MND
uncertainties caused by the nonlinear integration of land surface models while these hypernormal uncer-
tainties can be better characterized by generalized Gaussian distribution (GGD) which takes MND as the
special case. In this paper, one novel GGD based uncertainty sampling approach is outlined to create one
hypernormal ensemble for the purpose of better improving land surface models with observation. With
this sampling method, various assimilation methods can be tested in a common equation form.
Experimental results on Noah LSM show that the outlined method is more powerful than MND in reduc-
ing the misfit between model forecasts and observations in terms of actual evapotranspiration, skin tem-
perature, and soil moisture/ temperature in the 1st layer, and also indicate that the energy and water
balances constrain ensemble based assimilation to simultaneously optimize all state and diagnostic vari-
ables. Overall evaluation expounds that the outlined approach is a better alternative than the traditional
MND method for seizing assimilation uncertainties, and it can serve as a useful tool for optimizing hydro-
logical models with data assimilation.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

As the nature feedback of land surface water to atmosphere,
actual evapotranspiration (AET) bridges the water and energy bal-
ances by allocating energy in geosphere, biosphere and hydro-
sphere to reflect the interaction between land surface processes
and climate change (Xu et al., 2011). As a core subprocess in water
and energy cycles, accurately estimating AET has important scien-
tific and practical significances for drought prediction (Li et al.,
2016; Xiong et al., 2015), crop yield estimation (Kukal and Irmak,
2016; Jiang et al., 2016), irrigation and drainage (Giicli et al.,
2017; Liu et al, 2016), and water resources management
(Jarihani et al., 2015; Billah et al., 2015; Renzullo et al., 2008; Xu
et al,, 2011). Land surface models (LSMs) can forecast AET contin-
uously both temporally and spatially but with greater uncertain-
ties compared with in situ observations or remote sensing
retrievals due to coarse meteorological forcing, unrepresentative
model parameters, incomplete model parameterization, and/or
inaccurate model initial field et al. (Meng et al., 2009). Data
assimilation (DA) aims at producing a statistically optimal and
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kinetically consistent forecast trajectory by integrating the certain-
ties of model forecasts and observations according to their inher-
ent uncertainties to correct model state variables and parameters
within the framework of Bayesian inference (Reichle, 2008). Hence,
it is crucial for the success of actual evapotranspiration assimila-
tion (AETA) to specify the uncertainty statistics of the observations
and state field (Petrie and Bannister, 2011; Chen et al., 2015).
Currently, ensemble KF (EnKF) (Evensen, 1994) based methods
have been becoming the mainstream because they have two
attractive advantages: (1) model independence avoids adjoint
models; and (2) time-dependence can provide high order moments
of errors by the uncertainty flow (Xue and Zhang, 2014). These
methods mainly include variance localization/reduced/inflation
EnKF (Han and Li, 2008), ensemble adjustment/transform/ square
root KF (Vrugt et al., 2013), double EnKF (Houtekamer and
Mitchell, 2001, 1998), particle filter (PF) (Doucet and Johansen,
2011), unscented Kalman Filter (KF) (van der Merwe et al., 2000),
sampling importance resampling PF (Arulampalam et al., 2002),
regularised PF (Musso et al., 2001), etc. Later, EnKF is also coupled
into four dimensional variational DA (4Dvar), such as ensemble
4Dvar (En4DVar) (Liu et al., 2009), proper orthogonal decomposi-
tion En4DVar (PODEn4DVar) (Tian et al, 2011), 4Dvar EnKF
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(4DLETKF) (Hunt et al., 2004), auto-tuned DA (Crow and Yilmaz,
2014). In such cases when LSMs and observation operators are
both linear and the uncertainties follow multivariate normal distri-
bution (MND), KF as the analytic solution of DA can achieve the
best effect (Wikle and Berliner, 2007). When the two assumptions
do not hold, KF based methods represent the uncertainties of state
variables using perturbing samples produced from given probabil-
ity density functions (pdfs), then replace background error covari-
ance matrix by the sample covariance matrix (Li et al., 2014).

In practice, because it is difficult to know the accurate a priori
pdfs of the uncertainties in advance, KF based DA methods usually
assume the pdfs of the uncertainties follow MND (Storto, 2016),
which will cause nonnegligible DA bias since the true pdfs will
never be MND (Murphy and Godsill, 2016). Despite the assumption
is right at the beginning of DA, the MND will be transformed into
non-MND due to the nonlinear integration of LSMs, hence, MND
is usually not a good choice for sampling the uncertainties because
it cannot accommodate the hypernormal pdfs arising in DA, then
probably results in suboptimal DA results (Bishop, 2016). PF-like
methods do not require the pdf types of uncertainties, but the
improper selection of the proposal pdfs will lead to particle degra-
dation, and may also introduce additional uncertainties (Bocquet
et al., 2010), moreover, they are scarcely evaluated in the case of
non-MND (Han and Li, 2008; Moradkhani et al., 2012). Therefore,
how to accurately designate the pdfs of the uncertainties has
become the bottleneck of DA further advance though many DA sys-
tems and methods have been developed. To more accurately and
representatively sample the uncertainty, non-MNDs should be cov-
ered (Bishop, 2016; Bocquet et al., 2010; Murphy and Godsill,
2016; Moradkhani et al., 2012).

Up to now, there have been some explorations about the appli-
cation of non-MND pdfs to DA. Cohn (1997) performed a logarithm
transformation on state variables and observations under lognor-
mal statistics, which transformed linear observation operator to
be nonlinear. Simon and Bertino (2009) switched state variables
between non-MND and MND with (inverse) numerical anamor-
phosis functions while correlation considered anamorphosis func-
tions were intricate. Bulygina and Gupta (2009) conjectured the
uncertainty structure of hydrological models by Bayesian DA with
pre-assumed pdfs. Bocquet et al. (2010) generalized the techniques
of tackling the problem beyond normality, and stated the difficul-
ties to be circumvented. Pires et al. (2010) diagnosed the sources
and impacts of the innovation nonnormality under the case of
additive errors. Lei and Bickel (2011) debiased EnKF to forecast
ensemble with the desired pdf but the collapse problem of PF
had not yet been tackled. Ebtehaj and Foufoula (2011) recovered
the non-normal states of geophysical processes via wavelet sparse
regularization. Song et al. (2012) constructed one lognormal distri-
bution based cost function by only applying the logarithm trans-
form to these variables mapped to observation space.

Nakano (2014) hybridized ensemble transform KF and impor-
tance sampling PF for assimilating non-normal observations, but
it was not effective when the ensemble deviated from the true
state. Yen et al. (2014) examined the significance of multisource
uncertainties in controlling and reducing the predictive errors of
watershed behavior. Metref et al. (2014) proposed one multivariate
rank histogram method to yield a fully nonparametric transform
for ensemble DA, which was just tested with an idealized Lorenz
63 model not a realistic one. Bishop (2016) featured the uncer-
tainty pdfs of semi-positive-definite variables into Gamma,
inverse-Gamma and normality for optimizing ensemble produc-
tion. Storto (2016) relaxed the pdfs to be heavier-tailed than nor-
mality for assimilating observations with poor quality however
the minimization at first exhibited a low score. Attia et al. (2016)
proposed a cluster Hamiltonian Monte Carlo sampling filter for
non-normal DA while the sampling efficiency would be reduced

by the local ensemble with an improper size. Key results for these
studies are summarized in Table 1. Although these methods dissect
the contribution of the uncertainties of various pdfs on DA, they
cannot act as a general method to estimate and control hypernor-
mal uncertainties due to their complex causes and diverse forms.

To capture these hypernormal uncertainties in DA, this paper
has three objectives: (1) a novel sampling method is outlined
based on generalized Gaussian distribution (GGD); (2) with the
GGD samples created, three traditional assimilation methods are
unified into a common DA equation; and (3) the outlined method
is tested through two assimilation experiments. The outlined
method is founded on the simulation technique (Nardon and
Pianca, 2006; Song, 2006; Yu et al., 2012). Unlike above ways, it
needs neither space transform nor specific hypothesis since GGD
is one pdf of universival significance, so it can also manage the
propagation of MND errors during nonlinear LSM integration
because MND is one special case of GGD.

2. Theoretical background
2.1. The MND uncertainty sampling approach

Under the central limit theorem, MND can be used to approxi-
mate and derive some famous pdfs, such as lognormal/t/F distribu-
tions. The traditional sampling approach used in most ensemble
based DA methods produces the perturbing ensemble of state field
with the Monte Carlo method from one given a priori MND of the
uncertainties.

The MND in n dimensions has pdf as:

1 1 ~—
f(Z)WEXP{—E(Z—ﬂ) Z(Z—ﬂ)} (1)

The steps of generating a multivariate normal random vector Z
include (Kroese, 2011):

1) Derive the Cholesky decomposition X = AAT.

2) Generate independent identically uniform distributed Uy,
U, ~U(0, 1).

3) Return two independent standard ND variables, X and Y:

X =+/-2InUj cos P 2)
Y =

(2mU,)
v —=2InU; sin(2nU;)

4) Select one of X and Y as Z; according to acceptance-rejection
with an exponential proposal distribution which gives an
acceptance probability of \/7/(2e) ~ 0.76.

5) Go to step 2) until obtain n standard ND variables, and
let Z=(Z1,. .., Zy).

6) Output Z=p+AZ. This affine transformation can give a
MND variable with mean vector p and covariance matrix X.

Even if the uncertainty is subject to MND at the beginning of
DA, nonlinear LSMs will also deform it into non-normality by non-
linear integral, as shown by the example in Fig. 1. In Fig. 1a, the
ensembles used to perturb skin temperature and soil temperature
in the first layer are sampled from two NDs, and hence the graphs
of the ensembles and the NDs are exactly matched. However, after
a period of DA, the uncertainties of the two state variables obvi-
ously deviate from NDs, as shown in Fig. 1b. In such case, the
ensemble sampled from ND cannot reflect the actual random
behaviors of state variables, and will result in incorrect KF updat-
ing gain.
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