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Ordinal patterns provide a method to measure dependencies between time series. In contrast to classical
correlation measures like the Pearson correlation coefficient they are able to measure not only linear cor-
relation but also non-linear correlation even in the presence of non-stationarity. Hence, they are a note-
worthy alternative to the classical approaches when considering discharge series. Discharge series
naturally show a high variation as well as single extraordinary extreme events and, caused by anthro-
pogenic and climatic impacts, non-stationary behaviour. Here, the method of ordinal patterns is used
to compare pairwise discharge series derived from macro- and mesoscale catchments in Germany.
Differences of coincident groups were detected for winter and summer annual maxima. Hydrological ser-
ies, which are mainly driven by annual climatic conditions (yearly discharges and low water discharges)
showed other and in some cases surprising interdependencies between macroscale catchments.
Anthropogenic impacts as the construction of a reservoir or different flood conditions caused by urban-
ization could be detected.
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1. Introduction

Catchments and river basins are the spatial units considered in
hydrology. They are conceptualized as complex dynamical systems
where deterministic and stochastic processes occur simultane-
ously. It is recognized that there is a strong need for the classifica-
tion of catchments and hydrological phenomena (Bloschl et al.,
2013) in the framework of comparative hydrology. The similarity
of discharge regimes is a fundamental criterion for regionalisation.
For this purpose, time series of characteristic runoff values (aver-
ages, upper and lower extremes), which are derived from discharge
series have to be compared to analyse the impacts of spatial
heterogeneous distributed climate characteristics as well as of
differences of hydrological processes at the catchment scale. The
spatial covariance (correlation) is often applied as a measure of
the interrelationship between time series. It is the statistical basic
tool for interpolation and consistent mapping of runoff and its sta-
tistical descriptors. One problem of this approach consists in the
non-linearity of runoff processes. To give an example: an urbanized
catchment will react more directly on a flood inducing rainfall than
a natural one. If we consider two rain events, which differ in size,
the urbanized catchment will produce more runoff from the higher
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amount of rainfall in relationship to the natural catchment. If we
compare the runoff data from both catchments we see the same
tendencies (one event is higher than the other), but the quantita-
tive relationships between both events differ between the two
catchments. As a result, a linear regression model would not be
appropriated to describe the statistical relationship between the
two runoff series. Ordinal patterns (Bandt and Pompe, 2002) are
a simple approach to characterize the synchronicity of time series
without quantification of the variances of the time series, which
are affected by non-linearities or scale effects and not comparable
in many cases. Ordinal patterns were applied in hydrology for time
series analyses, e.g. to separate deterministic and stochastic parts
of daily discharge series (Lange et al., 2013). Lange et al. (2013)
estimated two indices, the permutation entropy and the permuta-
tion statistical complexity to quantify order pattern distributions
by their information content and complexity. Ordinal patterns
have been used in other fields of science for pattern recognition
e.g. to analyse EEG data (Keller and Sinn, 2005), sunspot numbers
(Bandt and Shiha, 2007), speech signals (Bandt, 2005) and chaotic
maps (Bandt and Pompe, 2002). Further applications include
estimation of the Hurst parameter in long-range-dependent data
(Sinn and Keller, 2011) and the approximation of the
Kolmogorov-Sinai entropy (Keller et al., 2013). Let us emphasize
that before Schnurr (2014) appeared, all of the above mentioned
authors used ordinal pattern analysis only difference, here the
ordinal patterns flood peaks between gauges at different spatial
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scales. Its potential to identify anthropogenic changes in runoff
series is shown as well as a comparison with classical correlation
methods.

2. Methodology

When comparing time series one often has to face the following
problem: two data series show interdependencies but are not cor-
related in the mathematical sense of the word. Let us explain this
in detail: in every-day-life, one would say that two data series are
positively correlated if the following holds true:

. { increases

}, thenYislikelyto{ increase }.,
decreases

decrease

Negative correlation would then mean that

. increases
increase

d
}, thenYislikelyto{ ecrease }
decreases

Admittedly, in the context of certain models this behaviour is
caught nicely by the mathematical correlation between time-
series (or their increments). On the other hand it is well known
that mathematical correlation measures linear dependence. If data
is correlated, but not in a linear way, mathematical correlation
might not be the method of choice. Furthermore, in order to deal
with mathematical correlation, both time series have to have
second moments, that is, the variance has to be finite. Several
interesting models, like so called o-stable random variables, do
not have this property. This means between two «-stable time ser-
ies, we cannot use mathematical correlation. Last but not least in
all classical approaches the time series have to be stationary from
the beginning (or after a careful pre-processing).

Nevertheless, hydrological time series often are modified by
anthropogenic or climatic impacts. Climate variability as well as
water management or land-use changes lead to a non-stationary
behaviour like changing means or variances in hydrological time
series. A reservoir for example has the aim to compensate the fluc-
tuations of runoff at the annual time scale. In this case, especially
the upper and lower extremes may show significant changes.
Hence, many recent results consider the non-stationarity of the
data (see Clarke, 2007; Salas and Obeysekera, 2014; Liu et al,,
2015; Serinaldi and Kilsby, 2015 and the references therein).

Here, we suggest a simple approach to describe dependencies
between time series by ordinal patterns (Schnurr, 2014; Schnurr
and Dehling, 2016), where the probability measures do not need
to have second moments. The time series we consider do not have
to be stationary. And: in a certain sense we are able to measure non-
linear correlation. The basic idea is to reduce the data to so called
ordinal patterns and then count, how often one finds pairwise the
same patterns at the same instants of time in two data sets.

2.1. The specification of ordinal patterns

For a fixed number of consecutive data points n, their ordinal
pattern describes the relative positions of the points. Let
X1,X2,...be the realized data of a time series. Fix the number of
considered data points n = 4 (often n € {2,3,4,5,6}), respectively
the number of increments h = n — 1. Let us consider the first four
data points x1,x,,X3,X4 and assume that the four values are pair-
wise different, e.g. x; = 2,x, = 9,x3 =3 and x4 = 11. Order them
top-to-bottom: x4 > X, > X3 > x;. Then write down the indices of
the data points in that order: (4,2,3,1). This vector in N" is called
the ordinal pattern of (x1,X2,X3,Xx4). We write (rq,...,r4) for this
vector. The pattern (ry,...,r4) contains the whole information of
relative positions of the data points, but nothing more. Therefore,
the information is reduced significantly. For each time point t

one now has to consider (X 1,X¢.2,Xe(3,X14) iN the same way. For
each starting point t we obtain an n-dimensional vector consisting
of the entries 1,2,3,...,n. A vector of this kind is called a
permutation.

It could be a problem that for different i and j the measured val-
ues of x; and x; do coincide. In order to have a unique representa-
tion, we demand in addition:

ifi<j and x;=x then r<r;.

For example, in the case (X 1,Xci2,Xc13,Xc4) = (7,10,7,5) we
would obtain (2,1, 3,4) as the ordinal pattern at time t.

In order to get a better intuition of the meaning of the permu-
tations, one could in fact think of the patterns as an archetype
structure as in the Fig. 1.

Instead of the two data sets x and y we, from now on, consider
only the sequence of patterns in both time series.

We count how often we find coincident patterns in two series.
Coincident patterns do mean that for the given length n (of the
time windows) the up-and-down behaviour of the two time series
is similar within the two synchronous windows (Fig. 2). E.g. if we
have (4,2,3,1) this means we start on a low value, increase, go
back to a point in between the first two and then have the highest
value in the end.

2.2. A measure to assess the significance of coincidences of ordinal
patterns between two times series

In the second step, we estimate a measure to compare the num-
ber of coincident patterns with its random value. This comparison
value is obtained in the following way: we assume for a moment
that the two time series are independent. Let us denote by Px(r)
the probability that the pattern r appears in the time series X (same
with Y). In the case h = 3 we would have the 24 different patterns
that are shown in Fig. 1. If the time series were independent, the
probability that r appears in both time series at the same time
would be Px(r) - Py(r) and the overall probability to find the same
pattern in both time series at a given time would be:

qi= Y Px(r)-Py(r) (M)

r=(r1,....Tn)

where we sum over all patterns r of length n. This is only a theoret-
ical construct. Caused e.g. by seasonality, some patterns will occur
more often in hydrological time series than others. In practice, for
each time series we estimate the empirical probabilities of the sin-
gle patterns by their relative frequencies. The comparison value v,
is the estimator of g, based on relative frequencies of the patterns in
both time series multiplied with (N — h), where N is the number of
observations. This means: The comparison value v, is the number of
coincident patterns which we would expect if the time series were
independent.

ve=(N-h) Y Px(r) Py(), (2)

T=(r1esThy1)

where Py(r) denotes the relative frequency of the pattern r in the
sample X.

Let us recall some of the advantages of the method which have
been emphasized in Schnurr and Dehling (2016): the whole analy-
sis is stable under monotone transformations of the state space.
The ordinal structure is not destroyed by measurement errors or
small perturbations of the data. Structural breaks in a single time
series do not effect the ordinal pattern dependence significantly.
There are fast algorithms to analyse the relative frequencies of
ordinal patterns in given data sets (cf. Keller et al., 2007,
Section 1.4). Furthermore, let us again emphasize that unlike other
concepts which are based on mathematical correlation, we do not
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