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a b s t r a c t

As an innovation, both black box and physical-based models were incorporated into simulating ground-
water flow and contaminant transport. Time series of groundwater level (GL) and chloride concentration
(CC) observed at different piezometers of study plain were firstly de-noised by the wavelet-based de-
noising approach. The effect of de-noised data on the performance of artificial neural network (ANN)
and adaptive neuro-fuzzy inference system (ANFIS) was evaluated. Wavelet transform coherence was
employed for spatial clustering of piezometers. Then for each cluster, ANN and ANFIS models were
trained to predict GL and CC values. Finally, considering the predicted water heads of piezometers as inte-
rior conditions, the radial basis function as a meshless method which solves partial differential equations
of GFCT, was used to estimate GL and CC values at any point within the plain where there is not any
piezometer. Results indicated that efficiency of ANFIS based spatiotemporal model was more than
ANN based model up to 13%.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Groundwater provides a crucial resource of water for drinking,
agriculture and industrial purposes. So, of the most important
environmental issues are management and conservation of
groundwater sources from different contaminants. When ground-
water is contaminated, removal of contaminants and the restora-
tion of quality may be slow and sometimes, impractical. It can be
harmful for human health, the ecosystem and can result in water
shortage. Thus, simulation of contaminant transport can be an
important task in hydro-environmental studies and consequently,
it is necessary to develop the robust models which can determine
the location and amount of pollution. For modeling groundwater
flow and contaminant transport (GFCT), several computational
methods, namely, finite difference method, finite volume method,
finite element method, and boundary element method have been

applied for numerical solution of governing physical-based partial
differential equation (PDE) (Bear and Cheng, 2010). Recently,
meshless or meshfree technique as an alternative method has been
used to solve PDEs of the GFCT in porous media. In a meshless
technique, a collection of scattered nodes is employed instead of
generated mesh over the problem domain. Meshless techniques
include the smooth-particle hydrodynamics, kernel method, mov-
ing least squares method, the element-free Galerkin method, parti-
tion of unity method, local Petrov-Galerkin method, radial point
interpolation method and the method of radial basis functions
(RBFs). Each method has its own advantages for particular prob-
lems (Dehghan and Shirzadi, 2015a,b). Among various meshless
methods, the RBF-based methods (e.g., Kansa’s collocation
method) with many general applications, have been more popular
numerical schemes in compared to other meshless methods
because: a) There is no need for boundary and domain discretiza-
tions; b) There is no need for integration over boundary and
domain; c) In some instances, they converge exponentially to pro-
vide smooth solutions; d) RBFs are of great importance in solving
complex high dimensional problems due to their dependence on
the Euclidean distance between points as univariate functions;
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e) Further information including interior conditions, boundary
conditions etc. can be added or deleted at any step of the modeling;
f) And finally, their coding and implementation is simple (Nourani
and Babakhani, 2013).

Multiquadric (MQ) RBF approximation technique was first used
by Hardy (1971, 1990) for the scattered geographical data interpo-
lation and then Kansa (1990) adopted Hardy’s MQ-RBF technique
to solve PDEs on irregular domains. Franke and Schaback (1997)
illustrated that MQ-RBF has the best performance compared to
other examined schemes. Also, a comparison between finite ele-
ment method and RBF methods was conducted by Li et al.
(2003). Several studies have investigated the capability of meshless
methods in the field of GFCT modeling (e.g., Boztosun and Charafi,
2002; Boztosun et al., 2002; Li et al., 2003; Herrera et al., 2009;
Alhuri et al., 2011; Li and Mao, 2011; Meenal and Eldho, 2012;
Swathi and Eldho, 2013; Dehghan and Shirzadi, 2015a).

Although the physical-based numerical techniques are widely
used for temporal and/or spatial modeling of hydro-environmental
systems, some real-world conditions such as anisotropy and
heterogeneity can have meaningful impacts on GFCT and restrict
the usefulness of such methods. As a result, these methods may
be replaced by data-driven or black box techniques when there is
no sufficient field data set and output accuracy is preferred over
physical perception of the phenomenon. The uncertainty and com-
plexity of the groundwater process have caused data-driven mod-
els such as artificial neural networks (ANNs) and adaptive neuro-
fuzzy inference system (ANFIS) are widely used by hydrogeolo-
gists. Several studies have been performed to examine the suscep-
tibility of artificial intelligence (AI) models for GFCT modeling (e.g.,
Coulibaly et al., 2001; Mohamed and Hawas, 2004; Singh et al.,
2004; Singh and Datta, 2007; Nourani et al., 2008; Li and Tsai,
2009; Bashi-Azghadi et al., 2010; Foddis et al., 2013; Shiri et al.,
2013; Taormina and Chau, 2014; Foddis et al., 2015; Nourani
et al., 2015).

Uncertainty involved in the model inputs and field parameters
like hydraulic conductivity of the soil, dispersion coefficient, their
temporal variations and unknown boundary conditions restrict
the GFCT model efficiency. In this research, both ANN and ANFIS
as AI-based black box models and MQ-RBF as a physical-based
PDE solving technique were incorporated accurately into simulat-
ing GFCT. On the other hand, since the data quality and involved
noise in data have significant impact on the efficiency of any
data-driven model, application of a data de-noising technique
can increase the capability of GFCT modeling. Recent studies have
shown that the performance of models applied for exploration and
forecasting of stochastic or deterministic systems can be enhanced
using de-noised data. Li and Mao (2011) studied the effect of
injected artificial noise to the groundwater quality data for identi-
fying contaminant sources. Nourani et al. (2014b) indicated that
the intensity of the noises which effect on the results of AI models
relay on both nature and level of the noise. The wavelet threshold-
based signal de-noising approach which identifies the localized
features of non-stationary signals in both time and frequency
domains, is a potential de-noising filter with regard to other de-
noising techniques (e.g., Wiener and Kalman filters which is only
capable of dealing with linear natural systems; ensemble Kalman
filter which is suitable only for Gaussian error and just propagates
the first two moments of error and has limited effectiveness for
highly nonlinear uncertainty evolutions) (Nourani et al., 2014a).
In this regard, Cannas et al. (2006) and Nourani et al. (2009)
applied multi-resolution analysis based on wavelet transform to
improve the efficiency of ANN-based river flow forecasting models.

The proposed hybrid model in this study contains several fea-
tures which distinguish it from previously proposed and published
GFCT modeling tools. The GFCT modeling in an infinite aquifer can
be limited due to the uncertainty of data and conceptualization of

model parameters, non-linear nature of the phenomenon, noise
involved in the observed data, insufficient data related to the
domain boundaries. In order to overcome the mentioned issues
of GFCT modeling, a hybrid artificial intelligence-meshless model
linked to a threshold-based wavelet de-noising method is sug-
gested in this paper. In the proposed method, in order to predict
groundwater level (GL) and chloride concentration (CC) one time
step ahead, an AI-based black box non-linear model (i.e., ANN or
ANFIS) is used to tackle the non-linear inherent of temporal varia-
tion of process. Also, the cross-wavelet coherence is linked to the
modeling structure to improve the capability of the AI model by
selecting most dominant inputs. On the other hand, linear form
of well-known physical-based Richards’ and advection-dispersion
PDEs are respectively used to identify spatial variations of the
GLs and CCs. The PDEs are solved in couple by MQ-RBF technique
which is a well-suited method for a problem with uncertain
boundary conditions but with known interior data, observed at dif-
ferent points (piezometers, in this study).

2. Materials and methods

2.1. Proposed hybrid AI-meshless model

In this research, in order to predict spatiotemporal GL and con-
taminant concentration in porous media, AI models (i.e., ANN and
ANFIS) were employed for temporal forecasting and MQ-RBF
method as a meshless model was used for spatial prediction of
Richards’ and advection-dispersion PDEs (i.e., Eqs. (5) and (7)). In
other words, temporal and spatial terms of these equations were
solved via AI models and meshless method, respectively. Thus,
both black box and physical-based models were incorporated into
simulating GFCT. Nomenclatures were used in proposed methodol-
ogy, are presented in Table 1.

The proposed hybrid AI-meshless approach for GFCT modeling
includes four distinguished stages (Fig. 1). In the first stage of mod-
eling, observed GLs and CCs time series of all piezometers are de-
noised using wavelet de-noising approach. De-noised time series
were used as inputs of the AI models into investigate influence of
noisy data in the results of modeling. In the second stage, in order
to forecast the GL and CC one time step ahead, an AI (i.e., ANN or
ANFIS) model is trained and verified for each piezometer consider-
ing river discharge (runoff), rainfall, water level of the lake, CC in
river and GLs with different lags as potential input data set. In this
stage, WTC was employed to cluster piezometers and identify cor-
relation among hydrological parameters and therefore to deter-
mine input parameters of the AI model. In the third stage,
considering the predicted GLs obtained from the second stage as
interior conditions, the MQ-RBF model as a meshless technique
was employed to solve spatial terms of PDE of groundwater flow
(i.e., Eq. (5)). In MQ-RBF model, the inputs are GL, UTMx (i.e., x-
coordinate of collocation points), UTMy (i.e., y- coordinate of collo-
cation points) and shape coefficient. In this stage, one time step
ahead GL is determined at any interested point of plain where no
piezometer exists to observe GL. Also, the velocity in any desired
point is calculated using the Darcy’s law and the optimum value
of RBF’s shape coefficient (cs1) (for groundwater flow equation) is
determined at any time step using imperialist competitive algo-
rithm. Finally, using the values of velocity and CC values of
piezometers predicted in the second stage, the CC value for the
next time step is computed at any desired point using MQ-RBF
based solution of contaminant equation (Eq. (7)). In MQ-RBF
model, the inputs are GL, CC, UTMx, UTMy, hydraulic conductivity,
dispersivity and shape coefficient. In this stage, imperialist com-
petitive algorithm is employed as an optimization tool to find opti-
mum values of hydraulic conductivity, longitudinal dispersivity
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