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a b s t r a c t

Groundwater recharge from snowmelt represents a temporal redistribution of precipitation. This is extre-
mely important because the rate and timing of snowpack drainage has substantial consequences to aqui-
fer recharge patterns, which in turn affect groundwater availability throughout the rest of the year. The
modeling methods developed to estimate drainage from a snowpack, which typically rely on temporally-
dense point-measurements or temporally-limited spatially-dispersed calibration data, range in complex-
ity from the simple degree-day method to more complex and physically-based energy balance
approaches. While the gamut of snowmelt models are routinely used to aid in water resource manage-
ment, a comparison of snowmelt models’ predictive uncertainties had previously not been done.
Therefore, we established a snowmelt model calibration dataset that is both temporally dense and rep-
resents the integrated snowmelt infiltration signal for the Vers Chez le Brandt research catchment, which
functions as a rather unique natural lysimeter. We then evaluated the uncertainty associated with the
degree-day, a modified degree-day and energy balance snowmelt model predictions using the null-
space Monte Carlo approach. All three melt models underestimate total snowpack drainage, underesti-
mate the rate of early and midwinter drainage and overestimate spring snowmelt rates. The actual rate
of snowpack water loss is more constant over the course of the entire winter season than the snowmelt
models would imply, indicating that mid-winter melt can contribute as significantly as springtime snow-
melt to groundwater recharge in low alpine settings. Further, actual groundwater recharge could be
between 2 and 31% greater than snowmelt models suggest, over the total winter season. This study shows
that snowmelt model predictions can have considerable uncertainty, which may be reduced by the inclu-
sion of more data that allows for the use of more complex approaches such as the energy balance method.
Further, our study demonstrated that an uncertainty analysis of model predictions is easily accomplished
due to the low computational demand of the models and efficient calibration software and is absolutely
worth the additional investment. Lastly, development of a systematic instrumentation that evaluates the
distributed, temporal evolution of snowpack drainage is vital for optimal understanding and manage-
ment of cold-climate hydrologic systems.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Infiltration resulting from snowmelt represents the temporal
redistribution of liquid precipitation. This is extremely important
because the rate and timing of snowpack drainage has substantial
consequences to aquifer recharge patterns, which in turn affect
groundwater availability throughout the rest of the year. In spite
of its significance, direct measurement and modeling of snowpack
outflow remains challenging due to the inherent limitations of
monitoring instrumentation.

A number of field methods have been used to measure water
drainage from snow packs (loss of snow water equivalence, SWE)
including snow pillows (Archer and Stewart, 1995; Butcher and
McManamon, 2011; Trujillo and Molotch, 2011), and snowmelt
lysimeters (Jost et al., 2012; Kattelmann, 1989, 2000; Tekeli
et al., 2005), both of which can render temporally dense point data.
Extrapolation throughout a watershed of point measurements such
as these is difficult due to the considerable spatial variability that
exists in both snow depth and corresponding SWE and heteroge-
neous infiltration processes resulting from different soil types
and structures across a watershed. Further, snow lysimeters have
structural configurations that impose bias to the output data, such
as sidewalls which are used to mitigate gains or losses from lateral
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flow within a snowpack (Haupt, 1969; Martinec, 1986). Snow pil-
low data can also be skewed due to snow bridging. Snow courses
(Marks et al., 2001; Rice and Bales, 2010) produce a more dis-
tributed understanding of SWE, however they are highly laborious
and are typically done at a coarse time resolution. Assessment of
SWE evolution is further complicated when considering that spa-
tial variability in recharge from snowmelt also results from irregu-
larity in the amount of water released from the base of the
snowpack. This ensues from complicated, preferential pathways
in which melt water travels through a snowpack before percolating
to the base (Kattelmann, 1989). Ultimately, snow hydrologists still
must rely on limited and possibly biased field data to obtain basic
liquid inputs for snowmelt modeling (DeWalle and Rango, 2008).

Numerous modeling methods have been developed to evaluate
snow processes, with complexities ranging between simple index
models and physically based multi-layer models which simulate
a snowpack’s energy balance (Etchevers et al., 2004). The ongoing
debate regarding the relative merits of these modeling end mem-
bers (Franz et al., 2010) has manifested in several model inter-
comparisons (Feng et al., 2008; Magnusson et al., 2011; Rutter
et al., 2009). In its simplest form, the degree-day (DD) method of
modeling snowmelt is based on the assumption that snowmelt
during a time interval is proportional to positive air temperature,
with the proportionality factor being the degree-day factor C
(Hock, 1999), an association first presented in (Linsley, 1943).
The relative contributions of the different energy balance compo-
nents can shift in space and time affecting the parameter C. These
changes include cloud cover, snowpack conditions, shift in season
or progression of day, aspect, slope and vegetation cover (Hock,
2003). That withstanding, Ohmura (2001) was able to show the
computational validity of melt rate parameterization using air
temperature, and that the degree-day method ‘‘works” because
temperature information is transferred to earth’s surface mainly
through long wave atmospheric radiation, which is by far the most
important heat source for melt. Several studies have demonstrated
improvements to the DD method via incorporation of solar radia-
tion (Hock, 1999, 2003; Jost et al., 2012) and progression of day
(Tobin et al., 2013). Overall though, the efficacy of this index
method is usually attributed to the way in which air temperature
effectively integrates the influence of a range of meteorological
variables, or energy fluxes (Hodgkins et al., 2012). Acquiring air
temperature data is relatively easy and inexpensive. In contrast,
more rigorous energy balance models are data intensive and usu-
ally require expensive instrumentation. At a minimum, physically
based assessments take into account air temperature, relative
humidity, wind speed, precipitation, global and incoming long
wave radiation. With this breadth of information researchers can
explicitly model changes in heat storage of a snowpack and solve
for snow surface temperature using a heat budget formula (Jost
et al., 2012), thereby more concisely modeling accumulation and
ablation. The physics behind the energy balance method has been
well documented (Anderson, 1968; Cline, 1995; Herrero et al.,
2009; Male and Gray, 1981; Marks and Dozier, 1992). An exhaus-
tive overview of snow models is presented by Yang (2008) and
updated regularly on the Snow Modelers Internet Platform.

Choice of modeling method is in part dictated by data and com-
putational availability. The empirical degree-day method requires
little data and is easily applied in distributed modeling efforts,
but does not explicitly take into consideration climatic forcing
functions operating during snow accumulation and ablation. In
contrast, the computationally intensive physically-based energy
balance methods offers more insight into the processes controlling
the energy balance (Hodgkins et al., 2012) but requires vast
amounts of data, which in consequence hinders distributed appli-
cation, needed for up-scaling of point-processes. Further, uncer-
tainty may be introduced when adopted model parameters are

unknown. Thus, to some degree, these modeling end members
serve different needs within the modeling community.

Most numerical models are employed to aid in environmental
management, and as such the uncertainty associated with predic-
tions made by such models must be assessed (Gallagher and
Doherty, 2007; Jost et al., 2012). However, given the issues with
the above-discussed field methods for collection of calibration data
and the lack of data for comparison, it has been difficult to quantify
1. to what extent these branches of snowmelt models provide
robust estimates of snowpack outflow and 2. how well these mod-
els perform at different time scales. That said initial attempts on
this front have been made. Seibert (1997) examined parameter
uncertainty within the HBV model using a Monte Carlo approach.
Since ranges in parameters can provide an almost equally good
model fit, Seibert concluded that model predictions should be
given a probability distribution rather than a single value, which
is in keeping with assertions made by Melching et al. (1990) and
Beven and Binley (1992). Franz et al. (2010) applied the Bayesian
Model Averaging (BMA) method to an ensemble of twelve snow
models, that varied in their heat and melt algorithms, parameteri-
zation, and/or albedo estimation method, to quantify the uncer-
tainty associated with these sources of error in the stream flow
forecasting process associated with snowmelt. Here the individual
models BMA predictive mean, and BMA predictive variance were
evaluated. An individual snow model would often outperform
the BMA predictive mean. However, observed snow water equiva-
lent was captured within the 95% confidence intervals of the BMA
variance on average 80% of the time. Franz et al. concluded that
consideration of multiple snow structures would provide useful
uncertainty information for probabilistic hydrologic prediction.
Slater et al. (2013) investigated uncertainty surrounding SWE
reconstruction, when using remote sensing, and found that errors
in model forcing data were at least as important, if not more so,
than image availability when reconstructing SWE. Even though a
few isolated studies have look at uncertainties surround snow pro-
cesses models, uncertainty assessment of model performance is
not routinely quantified for recharge estimates associated with
snowmelt. So far, there have been no systematic comparisons of
the uncertainties arising from different snowmelt modeling
approaches at either the parametric or structural levels.

This paper presents a comparison of three snow-process mod-
els’ ability to predict recharge from snowmelt and a short discus-
sion pertaining to the application of these results at different
temporal scales. This study was not intended to be an exhaustive
analysis of either parameters nor model structure uncertainty
but rather help shed light on how well snow process models are
able to predict recharge, either at the event or seasonal scale. To
generate snowmelt model calibration data, we used a large and
natural lysimeter as proposed by Kattelmann (2000). This
researcher stated that snowmelt runoff from a larger ‘‘natural
lysimeter”, a well defined catchment with an easily-monitored
drainage point, would provide a conceptually better basis for eval-
uating output from snowmelt models than the somewhat artificial
sampling of snowpack outflow by lysimeters and snow pillows. In
following, the karstified Vers Chez les Brant (VCB), which can be
viewed as an oversized, real-world lysimeter, consists of a
1600 m2 watershed that drains infiltrating water to a cave dis-
charge point (VCB1) 53 m below the ground surface (Meeks and
Hunkeler, 2015). We used this rather unique natural lysimeter to
evaluate the uncertainty surrounding modeled snowmelt predic-
tions. We used a simple, albeit physically based vadose zone
model, to back calculate snowmelt from the observed cave drai-
nage. The back-calculated snowmelt does not retain any of the
aforementioned data biases imposed by traditional lysimeters or
snow pillows, has a fine time resolution, and represents the inte-
grated behavior of snowmelt across the VCB recharge zone. This
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