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a b s t r a c t

Probability distributions unbounded to the right often give good fits to annual discharge maxima.
However, all hydrological processes are in reality constrained by physical upper limits, though not nec-
essarily well defined. A result of this contradiction is that for sufficiently small exceedance probabilities
the unbounded distributions anticipate flood magnitudes which are impossibly large. This raises the
question of whether displayed return period scales should, as is current practice, have some given num-
ber of years, such as 500 years, as the terminating rightmost tick-point. This carries the implication that
the scale might be extended indefinitely to the right with a corresponding indefinite increase in flood
magnitude. An alternative, suggested here, is to introduce a sufficiently high upper truncation point to
the flood distribution and modify the return period scale accordingly. The rightmost tick-mark then
becomes infinity, corresponding to the upper truncation point discharge. The truncation point is likely
to be set as being above any physical upper bound and the return period scale will change only slightly
over all practical return periods of operational interest. The rightmost infinity tick point is therefore pro-
posed, not as an operational measure, but rather to signal in flood plots that the return period scale does
not extend indefinitely to the right.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

All hydrological processes have some physical upper bound and
we can always specify some flood magnitude that is impossibly
large, as opposed to having a vanishingly small probability of
occurrence. Rainfall simulation models, for example, may incorpo-
rate an upper bound (Costa et al., 2015). Despite this bounded real-
ity, probability distributions unbounded to the right such as the
lognormal, Gumbel and gamma distributions often give good fits
to annual flood maxima. A display problem then arises in flood
plots as to the choice of the rightmost tick-mark on the return per-
iod scale. Typically this will be some large round number such as
500 years, but the implication remains that the return period scale
could be extended indefinitely to the right.

This is clearly an issue of graph aesthetics rather than opera-
tional hydrology. However, there is a scientific implication
involved in that there is a need to give visible indication that the
return period scale does not in reality extent forever to the right.

One approach which might be attempted here is to revise the
return period scale by making the assumption that the annual
flood maxima in fact represent random variables from an unknown

right-bounded distribution, and then seek nonparametric estima-
tors of that bound. The return period scale would then terminate
at an infinity tick point on the right, corresponding to the upper
bound. An early nonparametric bound estimator was presented
in the statistical literature by Robson and Whitlock (1964), utilis-
ing just the largest and second largest values in a sample. Related
statistical papers include Cooke (1980), Hall and Wang (1999),
Girard et al. (2012), and Alves and Neves (2014). An overview of
statistical methodology of bound estimation in the context of
regional earthquake magnitudes is given by Kijko and Singh
(2011).

However, it would seem unrealistic to employ statistical esti-
mation of upper bounds when annual flood maxima are already
well described by a distribution with no upper bound. That is,
the largest data values show no evidence of the proximity of a
bound because the information content of the data is already sum-
marised by the unbounded distribution parameters. In this situa-
tion it is inevitable that statistical upper bound estimates will
have such large estimation errors as to have little practical value
for identifying a true physical bound. One potential improvement
for flood distributions might come from fitting right-bounded dis-
tributions where the bound is estimated with the aid of physically-
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based estimates of probable maximum flood magnitudes (Botero
and Francés, 2010; Fernandes et al., 2010).

This brief communication proposes a simple alternative
approach to the bound issue in return period scales, consistent
with recorded data. The method replaces well-fitted unbounded
distributions of annual flood maxima with the same distribution
but now incorporating a high upper truncation point. The trunca-
tion point then serves as the infinity tick-point to terminate the
return period scale on the right. There is no implication of specify-
ing a physical upper bound and the truncation point must be
selected somewhere beyond the feasible flood range. With this
proviso, the truncation point location is not critical through some
checking might be required as to how large a feasible flood may
be (England et al., 2014). That is, the focus here is on an improved
scale representation and not hydrological discovery or parameter
estimation methodology. The return period scale over the region
of operational interest will remain essentially unchanged provided
the truncation point is selected to be sufficiently high. Time scales
of operational interest are assumed here to be in the order of a few
hundred years because extreme right-truncation would be
required to be far beyond a deemed operational return period of,
say, 10,000 years.

Inevitably, extending a return period scale to the right will
involve greater display of white space on a flood plot and the
choice of displaying a right infinity point becomes one of personal
preference. However, the introduction of an upper truncation point
also has a practical advantage in that extending the return period
toward infinity for unbounded distributions no longer implies
flood magnitudes extending to infinity.

It would appear that this is the first proposal for this simple
right-truncation concept to be used for return period scales. A
right-truncation approach is mentioned briefly by Sisson et al.
(2006) for the generalised extreme value distribution (GEV). How-
ever, the method was unusual in that the recommendation was to
use the untruncated GEV if the upper bound was poorly defined,
which implies still using the unbounded EV1 or EV2 distributions
(Type 1 and Type 2 extreme value distributions respectively).

2. Scale modification

The usual distributional assumption is made that a stationary
process generates annual flood maxima, which are taken to be
independent random variables from some common distribution.
Reference to long return periods here implies exceedance probabil-
ities under the current conditions and not necessarily stationarity
for the return period duration.

Define F(x) as a cumulative distribution function unbounded on
the right, applied to a set of annual flood maxima. The standard
relation giving return period RF(x) is:

RFðxÞ ¼ 1=ð1� FðxÞÞ x < 1 ð1Þ
Now introduce a finite upper truncation point b somewhere

well beyond the largest data value, which defines the truncated
distribution G(x):

GðxÞ ¼ p�1FðxÞ x � b ð2Þ

where p = F(b). The new return period relation then becomes:

RGðxÞ ¼ 1=ð1� GðxÞÞ ð3Þ
Introducing truncation at b has the effect of producing a longer

return period for any given discharge x 6 b. However, this differ-
ence will only become evident when x is sufficiently close to b such
that the return period ratio RG(x)/RF(x) = (1�F(x))/(1�G(x)) is not
near 1.0. Given operational return periods up to 500 years and it

is desired that the two time scales are not very different up to this
point, p = 0.9999 is suggested as giving similar return periods with
RF(x) = 500 years and the corresponding RG(x) = 526 years.

3. The EV1 and EV2 cases

The return period rescaling operation is illustrated with respect
to the upper-unbounded EV1 and EV2 extreme value distributions.
If F(x) is an EV1 (Gumbel) distribution of largest extremes then G(x)
is given by:

GðxÞ ¼ p�1 expð�e�ðx�nÞ=hÞ h > 0; �1 < x 6 b ð4Þ
where h is a scale parameter and n is a location parameter.

If F(x) is an EV2 distribution of largest extremes then G(x) is
given by:

GðxÞ ¼ p�1 exp½�ððx�xÞ=aÞ1=k� a > 0; k < 0; x 6 x 6 b ð5Þ
where a is a scale parameter, x is a location parameter (lower
bound), and k is a shape parameter.

For the extreme value distributions it is common practice to
plot annual flood maxima on the vertical axis and have on a hori-
zontal axis �ln[�ln(F(x))] (referenced here as z), which gives a lin-
ear plot when F(x) is an EV1 distribution.

Keeping in mind the intended use of the horizontal z scale to fix
the position of the modified return period scale, for both the right-
truncated EV1 and right-truncated EV2 distributions the return
period can be written:

RGðxÞ ¼ ½1� p�1FðxÞ��1 ¼ ½1� p�1 expð�e�zÞ��1 ð6Þ
Solving for z in Eq. (6) gives an explicit expression giving speci-

fic points on the horizontal z scale corresponding to the return per-
iod values of the modified return period scale:

zR GðxÞ ¼ � ln � ln p 1� R�1
GðxÞ

� �h in o
RGðxÞ > 1 ð7Þ

In contrast, the corresponding standard extreme value distribu-
tion expression for z with no upper truncation of the distribution
is:

zR FðxÞ ¼ � ln � ln 1� R�1
FðxÞ

� �h i
RFðxÞ > 1 ð8Þ

Eq. (7) can be used to construct the modified return period scale
when p has been specified. For example, if p = 0.9999 it is evident
that the infinite return period tick-point for the upper discharge
bound is obtained as corresponding to z = 9.21.

4. Examples

Fig. 1 illustrates an example application to a recorded data set
which is reasonably well fitted by an EV1 (Gumbel) distribution,
with EV1 parameter estimates of n = 4212 m3 s�1 and
h = 1158 m3 s�1 obtained from fitting a straight line. The
10,000 year return period magnitude from these parameters
(14,877 m3 s�1) was selected as the upper truncation point in this
case. The modified return scale as constructed from Eq. (7) is
shown as the upper of the two return period scales in Fig. 1, termi-
nating at the rightmost tick-point with infinite return period corre-
sponding to z = 9.21. This corresponds to the upper truncation
point discharge of 14,877 m3 s�1. The lower return period scale
is the usual scale from Eq. (1), displayed for the purposes of com-
parison. It is evident that there is very little difference between the
two scales in this case for return periods to 1000 years.

The second example (Fig. 2) illustrates the effect of moving the
upper truncation point too close to the largest recorded discharge
value. In this case an EV2 distribution gives an approximation to
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