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a b s t r a c t

Robust calibration of an agricultural-hydrological model is critical for simulating crop yield and water
quality and making reasonable agricultural management. However, calibration of the agricultural-
hydrological system models is challenging because of model complexity, the existence of strong param-
eter correlation, and significant computational requirements. Therefore, only a limited number of simu-
lations can be allowed in any attempt to find a near-optimal solution within an affordable time, which
greatly restricts the successful application of the model. The goal of this study is to locate the optimal
solution of the Root Zone Water Quality Model (RZWQM2) given a limited simulation time, so as to
improve the model simulation and help make rational and effective agricultural-hydrological decisions.
To this end, we propose a computationally efficient global optimization procedure using sparse-grid
based surrogates. We first used advanced sparse grid (SG) interpolation to construct a surrogate system
of the actual RZWQM2, and then we calibrate the surrogate model using the global optimization algo-
rithm, Quantum-behaved Particle Swarm Optimization (QPSO). As the surrogate model is a polynomial
with fast evaluation, it can be efficiently evaluated with a sufficiently large number of times during
the optimization, which facilitates the global search. We calibrate seven model parameters against five
years of yield, drain flow, and NO3-N loss data from a subsurface-drained corn-soybean field in Iowa.
Results indicate that an accurate surrogate model can be created for the RZWQM2 with a relatively small
number of SG points (i.e., RZWQM2 runs). Compared to the conventional QPSO algorithm, our surrogate-
based optimization method can achieve a smaller objective function value and better calibration perfor-
mance using a fewer number of expensive RZWQM2 executions, which greatly improves computational
efficiency.

Published by Elsevier B.V.

1. Introduction

Agricultural-hydrological models are important tools in quanti-
fying and improving our understanding of hydrologic processes
and evaluating the influence of agronomic management practices
on the water cycle, water quality, and agricultural production. Sev-
eral agricultural-hydrological models have been developed and
each model has its own features. For example, the SWAT model
evaluates effects of alternative management decisions on water
resources and nonpoint-source pollution in large river basins
(Arnold et al., 2012; Wang et al., 2015a); the HYDRUS model sim-
ulates water, heat, and solute movement in variably saturated

media (Šimůnek et al., 2008); and a newly developed model in
Alam and Dutta (2012) focuses on nutrient dynamics in river basin.
In this study, we considered the Root Zone Water Quality Model
(RZWQM2), which simulates plant growth and water, nutrient,
and pesticide movement based on soil physical characteristics
and hydraulic properties. The RZWQM2 was developed by the U.
S. Department of Agriculture, and it has been widely used to inves-
tigate effects of different agricultural management practices on
crop yield and water quality. The model performance has been
evaluated in several U.S. states (e.g., Colorado, Georgia, Iowa, Min-
nesota, Missouri, Montana, Nebraska and Ohio—Ghidey et al.,
1999; Wu et al., 1999; Landa et al., 1999; Abrahamson et al.,
2006; Saseendran et al., 2008; Thorp et al., 2008; Qi et al., 2011,
2013; Ma et al., 2012), and in other countries (e.g., Canada, China
and Portugal—Ahmed et al., 2007; Cameira et al., 2005; Fang
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et al., 2014; Sun et al., 2016). Recently, RZWQM2 has been used to
quantify climate change impacts on the hydrologic cycle and agro-
environments such as cultivated fields (Ko et al., 2011; Islam et al.,
2012; Wang et al., 2015b). In most cases, the model performed sat-
isfactorily, but its performance is sensitive to particular and some-
times poorly identified parameter values. Thus, calibration of
RZWQM2 is crucial to its successful application.

Traditionally, RZWQM2 has been calibrated by trial-and-error
methods. While this straightforward and simple method continues
to be widely used (Qi et al., 2011; Ma et al., 2012; Malonea et al.,
2014; Shresthaa and Dattab, 2015), it is time-consuming and the
termination process, heavily dependent on modelers’ experience
and expertise, suffers from subjectivity. Faced with the weakness
inherent to manual methods, gradient-based automatic calibration
tools, such as PEST (Doherty, 2004), have recently been employed
to calibrate RZWQM2 (Malone et al., 2010; Fang et al., 2012). PEST
adjusts model parameters to reduce the objective function value
until the fit between model simulation results and measurement
data is optimized. However, as a local optimizer, the use of PEST
may result in different optimal parameter estimates when starting
with different initial values, i.e., calibration results rely on the pro-
cedure initialization. In fact, for most gradient-based optimization
methods, becoming trapped in a local objective function minimum
is a common problem. To address this issue, Xi et al. (2015) applied
a global search method, termed quantum-behaved particle swarm
optimization (QPSO), to calibrate the RZWQM2 and obtained
promising results.

Proposed by Sun et al. (2004), QPSO is a population-based
swarm intelligence algorithm theoretically guaranteed to find opti-
mal solutions in search space. Given its strong global convergence,
the QPSO algorithm has been applied to many studies in recent
years (Davoodi et al., 2014; Xi et al., 2015; Hassani and Lee,
2016). A review on its application can be found in Fang et al.
(2010). Many numerical results indicated that with sufficiently
large iterations (typically thousands or even hundred thousand),
the QPSO can successfully identify globally optimal parameters
(Sun et al., 2004; Omkar et al., 2009). However, in practice, a large
number of iterations are usually unaffordable, especially for com-
plex system models such as the RZWQM2 where each model sim-
ulation typically takes several minutes or even hours.
Consequently, application of the global QPSO algorithm may end
up with providing a local optimum given the limited search result-
ing from the intensive expense of model runs.

In this study, the problem of the high computational cost of glo-
bal optimization is resolved by combining surrogate modeling with
the optimization operation to develop a surrogate-based optimiza-
tion algorithm. The surrogate modeling involves constructing a
cheap-to-evaluate surrogate model, which provides an accurate
and efficient approximation to the input-output relation of the
actual simulation model. Several surrogate methods have been
developed including sparse-grid stochastic collocation that uses
the sparse-grid interpolation (Nobile et al., 2008a, 2008b) and
probabilistic collocation that uses the finite dimensional polyno-
mial chaos expansion (Marzouk et al., 2007; Li and Zhang, 2007;
Shi et al., 2009). Chang and Zhang (2009) provided a comprehen-
sive comparison of the accuracy and efficiency of these two
methods.

The idea of sparse-grid (SG) methods is to place a grid in the
parameter space with sparse parameter samples (as opposed to a
full tensor-product grid). Then the simulation model is solved only
at these sparse parameter samples to construct an interpolant and
this interpolant is the SG-based surrogate of the actual simulation
model. The SG methods have been demonstrated to be efficient
and effective in dealing with uncertainty quantification problems.
For example, Shi and Yang (2009) and Lin and Tartakovsky (2009,
2010) used SG methods to estimate mean and covariance of

groundwater state variables such as hydraulic head and solute con-
centrations. Ma and Zabaras (2009) and Zeng et al. (2012) used SG
methods to build surrogate of geophysical models that were then
employed to evaluate parameter distributions. Zhang et al.
(2013) developed an adaptive SG method to accelerate Bayesian
inference in groundwater reactive transport modeling. Similarly,
Zeng et al. (2016) recently evaluated two SG surrogates for ground-
water Bayesian uncertainty quantification. However, the SG based
surrogate approach has rarely been employed in the context of
parameter estimation and never in agricultural-hydrological
models.

Considering the importance of the parameter optimization in
the RZWQM2 and the challenging in the calibration of the model,
this work explores a computationally efficient global optimization
scheme by combining SG-based surrogate methods with the QPSO
algorithm and applies it to the RZWQM2. The developed method
takes advantage of the global convergence of the QPSO while over-
coming its drawbacks in poor computational efficiency by using
surrogate modeling. The key idea is to use SG interpolation to con-
struct a surrogate of the RZWQM2 in a polynomial form, and then
evaluate the cheap-to-run surrogate model in the global optimiza-
tion process so as to improve overall computational efficiency. The
main contribution of our work lies in exploring the combination of
a state-of-the-art SG surrogate method with a global optimization
technique, and successfully applying this efficient method to find
better solutions of the RZWQM2 than previous study (Qi et al.,
2011; Xi et al., 2015), which greatly improves model calibration
performance and helps make rational and effective agricultural-
hydrological decisions.

The paper is organized as follows. The RZWQM2 and the surro-
gate optimization method are described in Section 2. In Section 3,
we apply the approach to calibrating the RZWQM2, and we exam-
ine the effectiveness and efficiency of the method in comparison
with the conventional QPSO algorithm. In Section 4, we further dis-
cuss the optimization results and show some insight on future
studies. Lastly, we conclude this paper in Section 5.

2. Materials and methods

2.1. Description of the RZWQM2 and calibration parameters

The Root Zone Water Quality Model (RZWQM2) is a one-
dimensional system model that simulates major physical, chemi-
cal, and biological processes in an agricultural crop production sys-
tem. It consists of components for hydrology, nutrition and
pesticide transport and transformation, plant growth and crop pro-
duction, and management activities (Ahuja et al., 2000; Ma et al.,
2005, 2006). Each component is simulated by sub-models. For
example, infiltration from rainfall, irrigation, or snowmelt is calcu-
lated using a modified Green-Ampt model. Water redistribution in
the soil profile is simulated via the Richards equation by treating
surface evaporation and plant root water uptake as sinks. Water
stored in the soil profile, if exceeding the field capacity, is drained
to build up a water table above the impermeable layer and the sub-
sequent tile drainage flux is computed using the steady state Hoo-
ghoudt equation. In addition, lateral flow and seepage are
quantified by user-defined parameters for constant bottom layer
water flux rate and hydraulic gradient, respectively. For the upper
boundary, soil evaporation and plant transpiration are estimated
by the double layer model of Shuttleworth and Wallace (1985),
which is an extension of the Penman-Monteith concept. Nutrient
chemistry processes are simulated by OMNI (Shaffer et al., 2000),
a state-of-the-art model for carbon and nitrogen cycling in soils.
The DSSAT cropping systemmodels (Jones et al., 2003) are incorpo-
rated to predict crop establishment and water and nutrient uptake.
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