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a b s t r a c t

The longitudinal dispersion coefficient (k) is necessary for a plethora of mass transport applications in flu-
ids, but a general formulation for k remains lacking. In this study, we propose a canonical form for k that
reflects the physics of dispersion and suits complex flow conditions encountered in natural streams. This
general form is much more concise than previous predictors. A predictor for k of natural streams is also
obtained using a genetic programming(GP) without pre-specified correlations among field data or a pre-
specified form of the predictor. This predictor is physically sound (i.e. exhibits the aforementioned canon-
ical form) and appears to be commensurate to or better than previous estimates of k. A grey model, which
measures the proximity of data to a target shape (i.e. the proposed physically sound form), is also used to
verify that the canonical form is appropriate. A formulation for k in natural rivers is obtained by utilising a
GP. Its form is consistent with the canonical form.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Understanding the transport of matter (mass, momentum and
heat) in solvent (gas and liquid) is necessary in a plethora of appli-
cations, such as contamination control, sediment deposition, flow
with vegetation, water intake, and thermal discharge (Burns and
Meiburg, 2012; Cassol et al., 2009; Chen et al., 2011; Deng et al.,
2001; Escobar, 2015; Guerrero and Skaggs, 2010; Jin et al., 2015;
Miño et al., 2013). In the ideal case of passive scalars (mass) in still
water, mass flux q is given by Fick’s lawq = �Ddc/dx, where c is the
scalar concentration, x is the distance along the longitudinal direc-
tion and D is the diffusion coefficient caused by Brownian motion
that is influenced by fluid temperature and the size of the mole-
cules of scalar c. In a moving fluid, the transport of scalar mass is
conventionally explored in a coordinate system moving at the
same average velocity as the fluid but without changing the molec-
ular properties of c (i.e. diffusion coefficient = D). However, the
effective ‘diffusion coefficient’, defined as �q(dc/dx) in moving flu-
ids along x, appears to be much larger than D (Abderrezzak et al.,
2015; Aris, 1956; Chen et al., 2012; Fischer, 1979; Ng and Zhou,
2012; Taylor, 1953) and is the theme of the present study. This ‘vir-
tual diffusion coefficient’, which is commonly referred to as the

longitudinal dispersion coefficient k, is not associated with molec-
ular motion. It is the result of macroscopic flow properties associ-
ated with the average of the advective acceleration in the
longitudinal direction and bulk mixing in the lateral direction
(Taylor, 1953; Wu and Chen, 2014a, 2014b; Zeng et al., 2015).

Under certain circumstances, k can be derived by solving the
advection–diffusion equation in laminar flow within a circular
pipe, in turbulent flow within a circular pipe, in laminar flow in
an elliptical pipe, in laminar flow within two planes, in laminar
flow in an open channel and in turbulent flow in an open channel.
However, k in natural streams does not have a complete theoretical
predictor because natural streams have many irregular factors,
such as dead zones and vegetation (Huai et al., 2012; Lees et al.,
2000).

However, because dispersion in natural rivers shows the same
mechanics (i.e. k results from the combination of concentration
and velocity gradients in the lateral direction), this study begins
with dispersion in laminar flow in a circular pipe (the deduction
for dispersion in natural rivers can be found in Text s1). We
attempt to discover the generality among the analytical formulae
and discuss the dispersion in the aforementioned circumstances,
which is a relevant topic worthy of exploration. These analytical
formulae are the foundation for obtaining the general formula for
k because they are all theoretical solutions and share an interesting
identity.
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One of the earliest formulations for k put forward by Taylor
(1953) was derived for laminar flow in a pipe. Both theoretical
and experimental results showed that k/D� 1 as a result of the
mean velocity gradient in the cross section. The theoretical solu-
tion for k is obtained by solving the advection–diffusion equation
given as
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The velocity (u) distribution in a laminar pipe can be derived
from the Navier–Stokes equation in radial coordinates; it is given
as u = u0(1 � r2/a2), where r is the radial distance from the centre
line, a is the radius of the pipe and u0 is the velocity along the cen-
tre line (i.e. maximum velocity). Assuming quasi-steady state con-
ditions and noting that the diffusion gradients along r are much
larger than their counterparts along x (i.e. boundarylayer approxi-
mation) in long pipes, the third term on the left-hand side and the
first term on the right-hand side of Eq. (1) can be neglected. By set-
ting z1 = r/a and x1 = x � u0t/2, the advection–diffusion equation for
the coordinate system moving at a mean speed U (=u0/2) is
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The formula for k in a laminar pipe flow (see Formula (T1.a) in
Table 1) is obtained by solving the equation for the boundary con-
ditions @c=@z1 ¼ 0; at : z1 ¼ 1 and by letting @c=@x1 be independent
of z1. However, k in a turbulent circular pipe flow is different from
that in a laminar circular pipe case. The differences are due to the

entire mean velocity distribution not having a theoretical formula
and the mixing coefficient in the lateral direction being different
from the diffusion coefficient in laminar flow as a result of turbu-
lence. Taylor (1954) obtained k for a turbulent circular pipe flow
through two experimental results. (1) The experiential velocity dis-
tribution over a cross section of a pipe was (u0 � u)/u⁄ = f(z1),
where u⁄ is the shear velocity given as u⁄ = (s0/q)1/2 = (gaJ/2)1/2

for the pipe; here,s0is the shear stress on the wall, g is the gravita-
tional acceleration and J is the energy slope (f(z1) is omitted here)
(Taylor, 1954). (2) Reynolds analogy—the transfers of mass,
momentum and heat by turbulence can be connected—was used,
i.e. er = s/(q@u/@r) = �qr/(@c/@r), where er is the transfer coefficient
(a turbulent mixing coefficient in the radial direction, which is
much larger than D), s is the shear stress at radius r and qr is the
concentration flux in the radial direction (Taylor, 1954). By substi-
tuting diffusion coefficient D with radial mixing coefficient er and
using the experimental mean velocity distribution, k for a turbu-
lent circular pipe flow can be obtained. Specifically, k (see Formula
(T2.a) in Table 1) comprises two parts, namely, longitudinal advec-
tion and longitudinal mixing, the combination of which results in
the longitudinal dispersion (Taylor, 1954).

Aris (1956) obtained a formula for k (see Formula (T3. a) in
Table 1) for a laminar elliptical pipe flow; in this formula, the ratio
of the major axis (a1) to the minor axis (b1) isrs. The formula recov-
ers the one obtained by Taylor (1953) (see Formula (T1.a) in
Table 1) when rs = 1. Extensive studies have also been conducted
on k for the laminar flow between two wide planes, the distance
between which is Ht, with consideration of the velocity variations
in the direction perpendicular to the plane. Another formula for k

Table 1
Formulae for k.

Authors Formulae

Taylor (1953) k = a2U2/(48D); (T1.a)
k = [aU/(48D)]aU (T1.b)

Taylor (1954) k = 10.05au⁄ + 0.052au⁄ or k = 7.14aUc0.5, where u⁄ was (gaJ/2)1/2 for a pipe,
J was the energy slope and c was resistance coefficient

(T2.a)

k = (10.1/C⁄)aU (T2.b)
Aris (1956) k = U2a1b1[(5 + 14rs

2 + 5rs
4)/(12(rs + rs

3))]/(192D) (T3.a)
or
k = {Ub1[(5 + 14rs

2 + 5rs
4)/(12(rs + rs

3))]/(192D)}a1U (T3.b)
Dewey and Sullivan (1979) k = U2Ht

2/(210D) (T4.a)
or k = [UHt/(210D)]UHt (T4.b)

Chatwin and Sullivan (1982) k = 2H2U2/(105D) (T5.a)
k = [2HU/(105D)]HU (T5.b)

Elder (1959) k = 5.93Hu⁄, where u⁄ is shear of the channel (T6.a)
or k = (5.93/C⁄)HU (T6.b)

Chikwendu (1986) for laminar channel flow:
k = 2H2U2/(105D) + D (T7.a)
for turbulent channel flow:
k = 0.4041Hu⁄/j3 + jHu⁄/6
where j is von Karman constant (T7.b)
for laminar pipe flow:
k = a2U2/(48D) + D (T7.c)

Fischer (1975) k = 0.011U2B2/Hu⁄ (T8.a)
k = (0.011UB/Hu⁄)BU (T8.b)

Liu (1977) k = 0.18(u⁄/U)1.5(UB)2/(Hu⁄) (T9.a)
k = (0.18(u⁄/U)1.5(UB)/(Hu⁄))BU (T9.b)

Bogle (1997) k = 0.011U2B2/Hu⁄/(50 � 25) (T10.a)
k = 0.011UB/Hu⁄/(50 � 25)BU (T10.b)

Seo and Cheong (1998) k = 5.92(U/u⁄)1.43(B/H)0.62Hu⁄ (T11)
Deng et al. (2001) k/(Hu⁄) = 0.15/(8ed)(U/u⁄)2(B/H)5/3 where ed = 0.145+(1/3520)(U/u⁄)(B/H)1.38 (T12)
Kashefipour and Falconer (2002) k = [7.428 + 1.775(B/H)0.62(u⁄/U)0.572]HU(U/u⁄) (T13)
Sahay and Dutta (2009) k/Hu⁄ = 2(B/H)0.96(U/u⁄)1.25 (T14)
Azamathulla and Ghani (2011) k/Hu⁄ = exp{exp[cos(U/u⁄)] + [(U/u⁄)2/(B/H + 3.956)]} + sin[BU/(Hu⁄)] ⁄ BU/Hu⁄/exp[sin(B/H)]

+ U/u⁄/1.037 � 10.76 ⁄ B/H/(U/u⁄ � 11.38)
(T15)

Etemad-Shahidi and Taghipour (2012) k = 15.49(B/H)0.78(U/u⁄)0.11H u⁄, if B/H<=30.6;k = 14.12(B/H)0.61(U/u⁄)0.85H u⁄, if B/H > 30.6 (T16)
Li et al. (2013) k = 2.828(B/H)0.7613(U/u⁄)1.4713H u⁄ (T17)
Zeng and Huai (2014) k = 5.4(B/H)0.7(U/u⁄)0.13HU (T18)
Disley et al. (2015) k/Hu⁄ = 3.563Fr�0.4117(B/H)0.6776(U/u⁄)1.0132, where Fr is Froude number, and Fr = U/(gH)0.5 (T19)
Sattar and Gharabaghi (2015) k/Hu⁄ = 2.9⁄4.6(Fr)^0.5Fr�0.5(B/H)0.5�Fr(U/u⁄)1+(Fr)^0.5 (T20)
Wang and Huai (2016) k = 17.648(B/H)0.3619(U/u⁄)1.16H u⁄ (T21)
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