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The authors present a detailed procedure for modelling of mean monthly flow time-series using records
of the Great Morava River (Serbia). The proposed procedure overcomes a major challenge of other avail-
able methods by disaggregating the time series in order to capture the main properties of the hydrologic
process in both long-run and short-run. The main assumption of the conducted research is that a time
series of monthly flow rates represents a stochastic process comprised of deterministic, stochastic and
random components, the former of which can be further decomposed into a composite trend and two
periodic components (short-term or seasonal periodicity and long-term or multi-annual periodicity). In
the present paper, the deterministic component of a monthly flow time-series is assessed by spectral
analysis, whereas its stochastic component is modelled using cross-correlation transfer functions, artifi-
cial neural networks and polynomial regression. The results suggest that the deterministic component
can be expressed solely as a function of time, whereas the stochastic component changes as a nonlinear
function of climatic factors (rainfall and temperature). For the calibration period, the results of the anal-
ysis infers a lower value of Kling-Gupta Efficiency in the case of transfer functions (0.736), whereas arti-
ficial neural networks and polynomial regression suggest a significantly better match between the
observed and simulated values, 0.841 and 0.891, respectively. It seems that transfer functions fail to cap-
ture high monthly flow rates, whereas the model based on polynomial regression reproduces high
monthly flows much better because it is able to successfully capture a highly nonlinear relationship
between the inputs and the output. The proposed methodology that uses a combination of artificial neu-
ral networks, spectral analysis and polynomial regression for deterministic and stochastic components
can be applied to forecast monthly or seasonal flow rates.
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1. Introduction doing this is to derive convenient mathematical relations among

the input factors and the flow rate, which allow for relatively sim-

Prediction of flow rates tends to be the focus of hydrological
research, given its great significance in terms of the operation of
reservoirs that have to meet a number of requirements such as
hydropower generation, water supply, flood protection and water
quality. Additionally, reservoir operation rules must deal with
multi-annual and intra-annual variability of the hydrologic process
so that limited water resources can be shared (Yevjevich, 1984;
Pekarova et al., 2003; Stojkovic et al., 2016). As such, there is a jus-
tified need for thorough investigation of the inner structure of flow
rates, to enable "control” of their behaviour, i.e. predict temporal
changes of flow rates considering the natural variability in hydro-
logic and meteorological time series (Loucks, 2005). One way of
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ple flow rate estimation rate based on observed inputs (Abudu,
2009; Abudu et al., 2011; Nourani et al., 2011; Kosti¢ et al.,
2016), or just as a function of time using long-term statistics
(Pekarova et al., 2003; Stojkovic et al., 2016). The uncertainty con-
nected with such approaches is strongly conditioned by the period-
icity of the temporal changes in the flow rate or by the nature and
selection of climatic inputs (Loucks, 2005; Taormina and Chau,
2015).

Hydrological models are commonly defined as deterministic or
stochastic, or a combination of the two (Fleming, 1975). It is intu-
itively clear that deterministic models enjoy great popularity, pri-
marily because they are much easier to derive in comparison to
stochastic models, and they are simpler to use (same output for
the same input). This is corroborated by a variety of deterministic
approaches, including empirical, conceptual and physically-based
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(Singh and Frevert, 2002). However, studies in the last decade
show that deterministic modelling of flow rate variation leaves a
certain part of the examined time series unexplained, and this
error can be significantly amplified when deterministic models
are used to predict the distant future. Fortunately, these uncertain-
ties in hydrologic modelling of flow rate time-series can be over-
come by stochastic models (Efstratiadis et al., 2014; Ilich, 2014)
or joint stochastic-deterministic models (Koutsoyiannis, 2000),
which have extensively been applied in the last decade.

So far, flow time-series have mostly been examined using a lin-
ear stochastic model such as ARMA (Autoregressive Moving Aver-
age), ARIMA (Autoregressive Integrated Moving Average) or
SARIMA (Seasonal Auto Regressive Integrated Moving Average)
(Salas et al., 1980; Valipour, 2015). Such models are capable of cap-
turing a linear statistical dependence among several successive
time lags. Their prediction can be improved by coupling with
empirical model decomposition, an approach that is useful for ana-
lysing time series which are often non-stationary (Wang et al.,
2015). Although widely used, the main drawback of such an
approach lies in the fact that the autocorrelation function of the
modelled hydrologic time series rapidly decreases and cannot be
used for modelling of a long-memory hydrologic process
(Koutsoyiannis, 2000).

Opposite to ARMA models, an alternative way of modelling
river flows as a dependent process driven by influential climatic
parameters is to use the cross-correlation Transfer Function (TF)
(Box et al., 2008). The application of TFs reveals the physically
meaningful mechanisms that underlie the rainfall-runoff relation-
ship (Young, 2005). This approach has been widely applied for
modelling monthly flow rates as a function of climatic inputs
(Abudu, 2009; Abudu et al, 2011) or for flow prediction in
ungauged basins (Palanisamy and Workman, 2014). It should be
noted that even though the application of transfer functions allows
one to infer the main physical mechanism behind the flow time-
series, the main limitation of this method lies in its capability to
capture only linear relations between the inputs (climatic factors)
and the outputs (flow rate). Given the fact that these relations are,
by definition, strongly nonlinear (which explains their stochastic-
unpredictable nature), the application of transfer functions for this
purpose can lead to ambiguous results. One way to deal with the
“wild and uncontrollable” nature of hydrological processes is to
engage some of the soft computing methods, including techniques
such as artificial neural networks (ANN) (Nourani et al., 2011;
Valipour et al., 2013; Gholami et al., 2015), the support vector
machine (Wu et al.,, 2014), evolutionary polynomial regression
(Guistolisi and Savi¢, 2006), singular spectrum analysis (Chau
and Wu, 2010) and genetic programming (Akbari-Alashti et al.,
2015). The results of previous studies have confirmed that ANN
could capture a nonlinear relationship between climatological
inputs and monthly flows (Abudu, 2009). A population-based opti-
misation algorithm can be deployed (Chen et al., 2015) to improve
the reliability of an ANN model. Moreover, Abudu et al., 2011
developed a hybrid model based on TF and ANN for modelling of
monthly flows during the spring-summer runoff season. The
results of their analysis indicate that the recorded high quantiles
of monthly flow rates are well reproduced by the modelled time
series. For the same reason, Wu et al., 2009 proposed three data-
preprocessing techniques (moving average, singular spectrum
analysis, wavelet analysis), coupled with ANN to improve the esti-
mate of daily flows. Considering model performance and complex-
ity, they suggest that the optimal model is the coupled one that
combines moving average and ANN.

As outlined above, there are many models for flow estimation
that are based on long-term flow statistics (Pekarova et al., 2003,
Pekarova and Pekar, 2006; Stojkovic et al., 2016) or which use
the conventional mathematical approach based on dependence

among inputs and the output at a few successive lags (Abudu,
2009; Abudu et al., 2011; Nourani et al., 2011; Kosti¢ et al.,
2016). The former approach preserves the characteristics of the
hydrologic process in the long-run, while the latter models can
reproduce the short-term hydrologic pattern. The objective of the
present paper is to introduce an approach that preserves both
long-term and short-term characteristics of hydrologic time-
series on two time scales (annual and monthly), using a disaggre-
gated time series. The underlying assumption is that the hydro-
logic time series can be decomposed into deterministic,
stochastic and random parts. In the present paper, the determinis-
tic part consists of the composite trend, macro-periodic component
and stationary seasonal component. These components describe
low-frequency and seasonal variability, while high-frequency vari-
ability is represented by the stochastic component. In the present
research, the stochastic component is modelled by TFs that
describe linear relations among the flow time-series and climatic
data. For the same purpose, artificial neural network (ANN) and
polynomial regression (PLR) are used as techniques capable of
modelling the complex relations between monthly flows and cli-
matic inputs. In such cases, ANN and PLR serve as tools for exam-
ining the accuracy of the approach based on transfer functions,
with the ultimate goal of deriving the most reliable model for
the stochastic component of monthly flow time-series.

2. Methodology

The present research relies on the basic assumption that
monthly flow time series can be decomposed into deterministic,
stochastic and random parts (Yevjevich, 1972), i.e. monthly flow
rates Q, represent the sum of three components:

Q; = Det; + Stoch; + error; — Q;

=[Qr+Qp+ Qs +[Y]; +[e], t=1,2,....N (M
where Qr is the composite trend, Qp is the long-term periodic com-
ponent, Qs is the seasonal component, Y; is the stochastic compo-
nent and N denotes the sample size. Addend e, is the error term
(random time series) having a zero mean, constant variance o2
and covariance function C; = 0 for lag t > 0.

One should emphasise that the composite trend (Qr) and long-
term periodic component (Qp) describe a long-term property of the
hydrological process expressed as large-scale variations, whereas
intra-annual (seasonal) variations are represented by the seasonal
component (Qs). Alongside these fluctuations, the stochastic com-
ponent represents high-frequency changes in monthly flows. It
should be noted that the stochastic component is characterised
by a substantial serial correlation and its auto-correlation function
rapidly decreases with the time lag. The last term in Eq. (1) is the
random component (e,), which represents an independent, uncor-
related time series (white noise).

2.1. Modelling of the deterministic component

In the present paper, the authors model the deterministic com-
ponent separately from the stochastic component, according to Eq.
(1), as a combination of the composite trend Qr, macro-periodic
component Qp and seasonal component Qs. The composite trend
and macro-periodic component constitute the annual determinis-
tic component, which is modelled on an annual time-scale,
whereas the seasonal component is modelled on a monthly time
scale. After the annual deterministic component is modelled, it is
downscaled to monthly intervals, so as to subtract it from the
monthly flow time-series. The first and second order residuals, Q/
and Q”, are derived in this way. The latter contains a significant
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