
Research papers

Assessing the weighted multi-objective adaptive surrogate model
optimization to derive large-scale reservoir operating rules with
sensitivity analysis

Jingwen Zhang a, Xu Wang b, Pan Liu a, Xiaohui Lei b,⇑, Zejun Li a, Wei Gong c, Qingyun Duan c, Hao Wang b

a State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
b State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
cCollege of Global Change and Earth System Science (GCESS), Beijing Normal University, Beijing 100875, China

a r t i c l e i n f o

Article history:
Received 13 September 2016
Received in revised form 1 December 2016
Accepted 6 December 2016
Available online 10 December 2016
This manuscript was handled by G. Syme,
Editor-in-Chief, with the assistance of Jesús
Mateo-Lázaro, Associate Editor

Keywords:
Large-scale reservoir operating rules
Aggregation-decomposition
Sensitivity analysis
Weighted crowding distance
Adaptive surrogate model
Xijiang river basin

a b s t r a c t

The optimization of large-scale reservoir system is time-consuming due to its intrinsic characteristics of
non-commensurable objectives and high dimensionality. One way to solve the problem is to employ an
efficient multi-objective optimization algorithm in the derivation of large-scale reservoir operating rules.
In this study, the Weighted Multi-Objective Adaptive Surrogate Model Optimization (WMO-ASMO) algo-
rithm is used. It consists of three steps: (1) simplifying the large-scale reservoir operating rules by the
aggregation-decomposition model, (2) identifying the most sensitive parameters through multivariate
adaptive regression splines (MARS) for dimensional reduction, and (3) reducing computational cost
and speeding the searching process by WMO-ASMO, embedded with weighted non-dominated sorting
genetic algorithm II (WNSGAII). The intercomparison of non-dominated sorting genetic algorithm
(NSGAII), WNSGAII and WMO-ASMO are conducted in the large-scale reservoir system of Xijiang river
basin in China. Results indicate that: (1) WNSGAII surpasses NSGAII in the median of annual power gen-
eration, increased by 1.03% (from 523.29 to 528.67 billion kW h), and the median of ecological index,
optimized by 3.87% (from 1.879 to 1.809) with 500 simulations, because of the weighted crowding dis-
tance and (2) WMO-ASMO outperforms NSGAII and WNSGAII in terms of better solutions (annual power
generation (530.032 billion kW h) and ecological index (1.675)) with 1000 simulations and computa-
tional time reduced by 25% (from 10 h to 8 h) with 500 simulations. Therefore, the proposed method
is proved to be more efficient and could provide better Pareto frontier.

� 2016 Published by Elsevier B.V.

1. Introduction

Water is essential in our life (Valipour and Singh, 2016). The
long-term optimal operation of the large-scale reservoir system
and the way of using the renewable water has attracted substantial
attention over the past decades in water resources management
(Valipour, 2012; Yannopoulos et al., 2015). The large-scale reser-
voir operation involves a time-consuming decision making process

because of non-commensurable (even conflicting) objectives and
high dimensionality (Liu et al., 2011a; Marino and Loaiciga,
1983; Oliveira and Loucks, 1997). An efficient multi-objective opti-
mization algorithm is required to derive the large-scale reservoir
operating rules effectively.

For deterministic reservoir operation, it is impossible to obtain
the optimal solution in a large-scale reservoir system because of
the curse of dimensionality (Liu et al., 2011b). Parameter simula-
tion optimization (PSO), which predefines a rule curve shape and
determines parameters through optimization algorithms (Celeste
and Billib, 2009), is widely used to derive the large-scale reservoir
operating rules. Various functional forms have been applied to
reservoir operating rules, such as linear regression (Liu et al.,
2014; Zeng et al., 2015) and support vector machine (Zhang
et al., 2015). The aggregation-decomposition model coupled with
piecewise linear regression is widely used in cascade hydropower
systems (Li et al., 2014). The aggregation method can transform a
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multi-reservoirs system into an equivalent virtual reservoir
(Turgeon, 1980). Valdes et al. (1992) proposed the aggregation in
power units rather than water units in hydropower system. The
decomposition method, which decentralizes the total decision into
individual reservoirs, is often used together with the aggregation
method (Terry and Sales, 1986). Neutral networks (Saad et al.,
1996, 1994), theoretical analysis (Lund and Guzman, 1999) and
fixed proportion have been successfully used as decomposition
forms.

Sensitivity analysis (SA) can screen out the most sensitive
parameters on model performance to decrease complexity
(Griensven et al., 2006; Saltelli et al., 2004). SA has been widely
used in the field of water resources, such as hydrological model
(Gan et al., 2014) and reservoir operating rules (Chu et al., 2015).
There are many SA methods which can be selected, including glo-
bal and local sensitive analysis methods. Li et al. (2013) concluded
that global SA methods were suitable for complex models to iden-
tify sensitive parameters from the insensitive ones. Among differ-
ent kinds of SA methods, multivariate adaptive regression splines
(MARS) was proved to be a stable SA method (Gan et al., 2014).

However, despite dimension reduction by SA, the computa-
tional burden involved in the large-scale reservoir system must
be considered for two reasons: (1) the multi-objective optimiza-
tion usually requires a large number of model runs to obtain the
optimal Pareto frontier (Li et al., 2016) and (2) running the opera-
tion for a multiyear and large-scale reservoir system is time con-
suming. Although many multi-objective optimization algorithms
have been used for several decades, such as NSGAII (Deb et al.,
2002) and MOSCEM (Vrugt et al., 2003), it is difficult to implement
these algorithms to obtain the Pareto optimal sets for large-scale
reservoir system because of high computational cost (Chu et al.,
2015). The weighted crowding distance was proposed to guide
the searching process towards the non-dominated region, replac-
ing the classical crowding distance (Gong et al., 2015b).

Surrogate model, also called metamodeling, can mimic complex
model to reduce computational burden of optimization. Razavi
et al. (2012) summarized research on surrogate model in water
resources, such as groundwater optimization problems (Johnson
and Rogers, 2000) and water distribution system design and opti-
mization (Behzadian et al., 2009). For multi-objective surrogate
model optimization, some researchers transformed multi-
objective problem into single-objective problem through some
scalarization methods. For example, Gong et al. (2015a) used three
weighing functions to convert the multi-objective problem into a
single-objective problem in land surface models. Three multi-
objective surrogate model based optimization methods, ParEGO
(Knowles, 2006), SUMO (Gorissen et al., 2010) and SMS-EGO
(Ponweiser et al., 2008), which transformed multi-objective prob-
lem into multiple single-objective problems, were compared with
two classical evolutionary algorithms, NSGAII and SMS-EMOA
(Beume et al., 2007) in multi-reservoir operation (Tsoukalas and
Makropoulos, 2015). The results indicated that the surrogate
model based optimization performed better than the classical evo-
lutionary algorithms, and SUMO outperformed ParEGO and SMS-
EGO. Gong et al. (2015b) developed a multi-objective adaptive sur-
rogate modeling based optimization algorithm, which can keep
better balance of convergence and diversity with adaptively select-
ing the most representative sample points.

Based on the above mentioned researches, we can know that
NSGAII has been widely used in reservoir optimization operation.
Surrogate model and sensitivity analysis have been applied to
reservoir operation due to the computational burden and high
dimension. However, little work has been done about multi-
objective reservoir optimization operation using WNSGAII coupled
with adaptive surrogate model. Furthermore, integration of sensi-
tivity analysis and adaptive surrogate model has not been done

in previous research. The purpose of this paper is to use the
WMO-ASMO that incorporates the weighted crowding distance
and the adaptive surrogate model to derive the optimal large-
scale reservoir operating rules under sensitivity analysis, compared
with the classical evolutionary algorithms. Particularly, the
weighted crowding distance could guide the searching process
and the adaptive surrogate model solves the computational
large-scale reservoir simulation. WMO-ASMO obtains the optimal
Pareto frontier more efficiently and effectively than two evolution-
ary algorithms, with a case study in the derivation of large-scale
reservoir operating rules of Xijiang river basin in China.

2. Methodology

As shown in Fig. 1, this paper proposes an improved multi-
objective optimization method for the derivation of large-scale
reservoir operating rules. The methodological processes are sum-
marized below.

(1) Reservoir simulation model. The large-scale reservoir oper-
ating rules are predefined by aggregation-decomposition
method (AGDP), coupled with piecewise linear regression.
The parameters of piecewise linear operating rules are
selected as the model inputs, while the annual hydropower
generation and the ecological index are the outputs
(Section 2.1).

(2) Sensitivity analysis (SA). MARS method is used to screen out
the important parameters with Latin Hypercube and Monte
Carlo sampling techniques. Sensitive parameters are opti-
mized through multi-objective optimization algorithms
and other parameters are fixed according to the default
parameters (Section 2.2).

(3) Multi-objective optimization. The surrogate model GPR is
applied to the multi-objective optimization to evaluate its
efficiency. WNSGAII is integrated into GPR to update surro-
gate model. The weighted multi-objective adaptive surro-
gate model optimization (WMO-ASMO) is compared with
the typical NSGAII and WNSGAII (Sections 2.3 and 2.4).

(4) Pareto frontier. Results of three multi-objective optimization
algorithms are analyzed to determine the appropriate multi-
reservoir operating rules.

Above all, reservoir simulation model and multi-objective opti-
mization are the most important parts. The detailed explanation
should be focus on Sections 2.1 and 2.4.

2.1. Aggregation-decomposition model

Since the high dimensionality of a large-scale reservoir system
cannot be solved by the deterministic optimization model
(Anand et al., 2013), an aggregation-decomposition method
(AGDP) should be considered. The aggregation-decomposition
model is to aggregate all the reservoirs to determine the total out-
put, then allocates it to the individual reservoirs (Heever and
Grossmann, 2002).

2.1.1. Aggregated reservoir
Supposing the drainage area is large and the flows change

greatly with season, the reservoirs in different branches and differ-
ent seasons can be aggregated as several aggregated reservoirs,
respectively. An aggregated reservoir can retain and describe some
features of the reservoirs in the same branch without considering
their interactions. The reservoirs are aggregated in energy units
rather than water units due to variation of head and unit efficiency
for hydropower reservoirs (Valdes et al., 1992; Zhou et al., 2015).
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