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a b s t r a c t

This article considers stream flow discharge moving through channels subject to the lateral inflow and
described by a linearized diffusion wave equation. The variability of lateral inflow is manifested by ran-
dom fluctuations in time, which is the only source of uncertainty as to flow discharge quantification. The
stochastic nature of stream flow discharge is described by the probability density function (PDF) obtained
using the theory of distributions. The PDF of the stream flow discharge depends on the hydraulic prop-
erties of the stream flow, such as the wave celerity and hydraulic diffusivity as well as the temporal cor-
relation scale of the lateral inflow rate fluctuations. The focus in this analysis is placed on the influence of
the temporal correlation scale and the wave celerity coefficient on the PDF of the flow discharge. The
analysis demonstrates that a larger temporal correlation scale causes an increase of PDF of the lateral
inflow rate and, in turn, the PDF of the flow discharge which is also affected positively by the wave celer-
ity coefficient.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Fluctuations in surface lateral inflow into a nearby stream over
a large space scale is generally recognized as being affected by nat-
ural heterogeneity in surface runoff processes, a by-product of
stochastic nature of the rainfall events, rainfall infiltration and
ground surface conditions. There are significant lateral inflows
contributing to streams during storm-runoff periods in the case
of stream reaches with large lateral watershed areas or upslope
accumulated areas (Jencso et al., 2009). As such, the stochastic
(random) character of the inflow process may lead to large uncer-
tain in the prediction of stream flow discharge based on the deter-
ministic models. The complex nature of the variability in space and
time and the limited amount of available field data are among the
reasons that motivate the hydrologists to apply the probabilistic
concepts to characterize the stream discharge process over large
space and time scales (e.g., Abaza et al., 2014; Bonaccorso et al.,
2015; Zhao et al., 2015).

The forecasting of stream flow is critical in water quantity and
quality managements. For management purposes, it needs to ana-
lyze the variations and underlying causes of extreme stream flow
discharge events. It is clear that stream flow characterization at a

large time scale remains inherent uncertainty due to temporal nat-
ural variability of inflow forcing. The uncertainty quantification
such as the tails of a probabilistic distribution (or a state variable’s
PDF) is therefore a prerequisite for making correct decisions.

In most stochastic studies, the second moment (ensemble vari-
ance) of the state variable is commonly used to quantify the model
uncertainty stemming from heterogeneities in the model parame-
ters. The moment gives a quantitative measure of the error to be
anticipated in applying a classical model (large-scale model). How-
ever, the measure of uncertainty is not sufficient for the probabilis-
tic risk assessment and management where uncertainty is required
to be expressed through the PDF of state variable. Motivated by
that, the objective of this work is to quantify uncertainty for flow
in lateral inflow-dominated stream channels by the use of a prob-
abilistic model developed by the theory of distributions (e.g.,
Schwartz, 1952; Kanwal, 1997) within a stochastic framework.
Its output such as the PDF of the stream flow discharge will be use-
ful in assessing the rare stream flow events and associated risks.
The analysis of results will focus on the impacts of the temporal
correlation scale of lateral inflow fluctuations and the hydraulic
property of the stream flow (namely, the wave celerity) on the
PDF of the stream flow discharge.

To the best of our knowledge, the uncertainty analysis of lateral
inflow dominated stream flow on the basis of the diffusion wave
model so far has not been presented in the stochastic literature.
All the existing studies on quantification of stream flow variability
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were carried out based on kinematic wave models with neglecting
the effects of inertial and pressure forces (e.g., Scharffenberg and
Kavvas, 2011; Ercan and Kavvas, 2012; Wang and Tartakovsky,
2012). Kinematic wave models would be adequate if the flow is
unsteady gradually varying and has little backwater effects
(Ponce et al., 1978; Singh, 1996). Kinematic waves behave closely
to observed natural flood waves in steep rivers with slopes
>0.002 (Henderson, 1966). The diffusion wave models (keeping
the pressure-gradient term) are an improvement over kinematic
wave models because they are capable of accommodating backwa-
ter effects (Dooge and Napiorkowski, 1987; Singh, 1996). The diffu-
sion wave approximation is appropriate for simulations of the
flood waves in rivers and on flood plains with milder slopes rang-
ing from 0.0001 to 0.001 (Kazezyılmaz-Alhan, 2012). This simpli-
fied approximation is therefore appropriate in most cases of
practical interest (Ponce, 1989; Singh, 1996; Kazezyılmaz-Alhan,
2012).

A different approach for quantification of stream flow discharge
variability to the same problem was taken by Chang and Yeh
(2014). The main theme of Chang and Yeh (2014) was to quantify
the variability in stream flow discharge in response to fluctuations
in lateral inflow rate. In their work, the temporal correlation struc-
ture of the fluctuations in the lateral inflow rate was described by
the statistics of random fractals. The variance of flow discharge,
obtained using the representation theorem, served as an index of
large-scale temporal variability. Instead, the focus of the present
study is placed on the development of stream flow discharge PDF
through the theory of distributions. The random temporal lateral
inflow process is characterized by the Langevin equation. When
one is concerned with stream flow quantity assessment which
involves the probability of rare events, the PDF is required
information.

2. Problem formulation

The variations of stream flow discharge Q in response to the
temporal changes in lateral inflow rate qL can be quantified by
the linearized diffusion wave equation (e.g., Yen and Tsai, 2001;
Fan and Li, 2006) as

@

@t
QðX; tÞ ¼ Dh

@2

@X2QðX; tÞ� Cd
@

@X
QðX; tÞ þ CdqLðtÞ 0< X < L;0< t

ð1Þ
where Cd and Dh represent the wave celerity and hydraulic diffusiv-
ity, respectively, and L is the size of the stream flow domain. This
study regards the lateral inflow rate as a temporally correlated ran-
dom function. For a temporally correlated lateral inflow rate and
through Eq. (1), the stream flow discharge becomes a temporally
correlated function. In other words, the temporal variability of Q
is produced by the correlated stochastic process qL.

It is important to know that Eq. (1) is linearized around the ini-
tial steady-state uniform flow condition through the first-order
perturbation analysis (e.g., Dooge and Napiorkowski, 1984;
Tingsanchali and Manandhar, 1985). As such, Eq. (1) is only accu-
rate to the case where the fluctuations in discharge are small com-
pared with the initial uniform reference discharge and the
parameters Cd and Dh in Eq. (1) are related to the initial hydraulic
properties and reference flow condition.

Due to temporal variation of lateral inflow processes, the lin-
earized diffusion wave equation (1) is viewed as a stochastic differ-
ential equation with stochastic effective parameters (Cd and Dh), a
stochastic input (qL), and therefore a stochastic output (variation of
stream flow discharge). As such, Cd and Dh here represent the
ensemble means of the wave celerity and hydraulic diffusivity,

respectively. In general, both Cd and Dh are closely related to the
hydraulic properties of the stream flow, such as the stream channel
cross-section geometry, the stream channel bed slope, and the area
of the stream flow (e.g., Yen and Tsai, 2001). That is, the stream
flow discharge perturbations are dependent of statistic properties
of lateral inflow rate and the hydraulic properties of the stream
flow.

In the present study, we concentrate on the effects of temporal
variability in lateral inflow rate and assume that the stream flow
discharge is maintained at the initial uniform value (no perturba-
tion) at the stream boundaries. The flow variability is attributed
solely to the stochastic nature of inflow events. The initial and
boundary conditions for the variation of stream flow discharge
considered here are specified as

QðX;0Þ ¼ 0 ð2Þ

Qð0; tÞ ¼ 0 ð3aÞ

QðL; tÞ ¼ 0 ð3bÞ
where L is the size of a bounded domain. Eq. (1) along with Eqs. (2)
and (3), constituting a stochastic system of equations, states that for
prescribed (deterministic) initial and boundary conditions, the vari-
ability of stream flow in space and time is produced only by tempo-
ral random fluctuations in lateral inflow rate.

With the aid of Duhamel’s principle, the solution to the inhomo-
geneous problem (Eqs. (1)–(3)) can be found once the solution to
the homogeneous version (parameterized by S) is known and
expressed as

@

@t
QðX; t;SÞ ¼ Dh

@2

@X2QðX; t;SÞ � Cd
@

@X
QðX; t;SÞ 0< X < L;S< t

ð4Þ

QðX; S; SÞ ¼ CdqLðSÞ ð5Þ

Qð0; t; SÞ ¼ 0 ð6aÞ

QðL; t; SÞ ¼ 0 ð6bÞ
The solution to Q(X, t) with the source term in Eq. (1) is then

given by

QðX; tÞ ¼
Z t

0
QðX; t; SÞdS ð7Þ

Following Pope (1981, 2000) and Tartakovsky and Broyda
(2011), the fine-grained PDF of the stream flow discharge can be
defined as

pðq;X; t; SÞ ¼ hHðq;X; t; SÞi ð8Þ
where < > designates the ensemble average and

Hðq;X; t; SÞ ¼ d½QðX; t; SÞ � q� ð9Þ
where q is an outcome for flow discharge event which will occur.
The delta function in Eq. (9) is not an ordinary function in the usual
sense but rather a generalized function or distribution in the theory
of distributions (e.g., Kanwal, 1997). A functional approach to gen-
eralized functions was originally introduced by Schwartz (1952).

In the theory of distributions, a test function such as the delta
function can be mapped into real or complex numbers by

ðH; f Þ ¼
Z 1

�1
f ðXÞHðXÞdX ð10Þ

where f(X) is a fixed function. The higher-order partial derivatives of
a distribution can then be defined applying the functional Eq. (10)
and integration by parts. This results in the general relation
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