
Accepted Manuscript

Research papers

Multi-objective assessment of three remote sensing vegetation products for streamflow prediction in a conceptual ecohydrological model

Bushra Naseem, Hoori Ajami, Yi Liu, Ian Cordery, Ashish Sharma

PII:	S0022-1694(16)30683-7
DOI:	http://dx.doi.org/10.1016/j.jhydrol.2016.10.038
Reference:	HYDROL 21599
To appear in:	Journal of Hydrology
Received Date:	21 March 2016
Revised Date:	18 September 2016
Accepted Date:	22 October 2016

Please cite this article as: Naseem, B., Ajami, H., Liu, Y., Cordery, I., Sharma, A., Multi-objective assessment of three remote sensing vegetation products for streamflow prediction in a conceptual ecohydrological model, *Journal of Hydrology* (2016), doi: http://dx.doi.org/10.1016/j.jhydrol.2016.10.038

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Multi-objective assessment of three remote sensing vegetation products for

streamflow prediction in a conceptual ecohydrological model

Bushra Naseem¹, Hoori Ajami^{1,2}, Yi Liu³, Ian Cordery¹ & Ashish Sharma^{1*}

¹School of Civil and Environmental Engineering, University of New South Wales, Sydney,

NSW 2052, Australia

²Department of Environmental Sciences, University of California Riverside, Riverside, USA

³ARC Centre of Excellence for Climate System Science & Climate Change Research

Centre, UNSW, Sydney, Australia

*Corresponding author address:

Ashish Sharma, School of Civil and Environmental Engineering, University of New South

Wales, Kensington, New South Wales, 2052, Australia.

E-mail: a.sharma@unsw.edu.au

Phone: +61 2 9385 5768

Fax: +61 2 9385 6139

Abstract

This study assesses the implications of using three alternate remote sensing vegetation products in the simulation of streamflow using a conceptual ecohydrologic model. Vegetation is represented as a dynamic component in this model which simulates two response variables, streamflow and one of the following three vegetation attributes: Gross Primary Productivity (GPP), Leaf Area Index (LAI) or Vegetation Optical Depth (VOD). Model simulations are performed across 50 catchments with areas ranging between 50 to 1600 km² in the Murray-Darling Basin in Australia. Moderate Resolution Imaging Spectroradiometer (MODIS) LAI and GPP products, passive microwave observations of VOD and streamflow are used for model calibration and/or validation. Single-objective model calibration based on one of the vegetation products (GPP, LAI and VOD) shows that GPP is the best vegetation simulating

Download English Version:

https://daneshyari.com/en/article/5771462

Download Persian Version:

https://daneshyari.com/article/5771462

Daneshyari.com