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a b s t r a c t

In this study, a novel treatment of adopting mass-varied particles in smoothed particle hydrodynamics
(SPH) is proposed to solve the shallow water equations (SWEs) and model the rainfall-runoff process.
Since SWEs have depth-averaged or cross-section-averaged features, there is no sufficient dimension
to add rainfall particles. Thus, SPH-SWE methods have focused on modeling discharge flows in open
channels or floodplains without rainfall. With the proposed treatment, the application of SPH-SWEs
can be extended to rainfall-runoff processes in watersheds. First, the numerical procedures associated
with using mass-varied particles in SPH-SWEs are introduced and derived. Then, numerical validations
are conducted for three benchmark problems, including uniform rainfall over a 1D flat sloping channel,
nonuniform rain falling over a 1D three-slope channel with different rainfall durations, and uniform rain-
fall over a 2D plot with complex topography. The simulated results indicate that the proposed treatment
can avoid the necessity of a source term function of mass variation, and no additional particles are needed
for the increase of mass. Rainfall-runoff processes can be well captured in the presence of hydraulic
jumps, dry/wet bed flows, and supercritical/subcritical/transcritical flows. The proposed treatment using
mass-varied particles was proven robust and reliable for modeling rainfall-runoff processes. It can pro-
vide a new alternative for investigating practical hydrological problems.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

The rainfall-runoff process is an important hydrological phe-
nomenon that relates the stream flow response of a river to a given
amount of rainfall (Beven, 2001). Rainfall-runoff modeling can be
classified into two major categories based on the hydrologic sys-
tem: black box lumped modeling and physically based distributed
modeling (Chow et al., 1988). Lumped modeling averages parame-
ters for the entire watershed, ignores flow-routing mechanisms,
and transforms effective rainfall into an outflow hydrograph. It
can quickly obtain results, but cannot provide detailed physical
processes (Freeze and Harlan, 1969). Distributed modeling consid-
ers variations in variables and parameters based on understanding
different physical processes. It solves the shallow water equations
(SWEs) computationally using the fully dynamic wave approach or
the simplified forms of the SWEs using the diffusive wave approx-
imation or the kinematic wave approximation. A variety of numer-
ical methods have been used to solve rainfall-runoff problems,

including finite difference methods (Esteves et al., 2000; Fiedler
and Ramirez, 2000), finite volume methods (Cea et al., 2010;
Costabile et al., 2013), and finite element methods (Vieux and
Gauer, 1994). These grid-based methods have provided satisfac-
tory modeling results. However, some physical and numerical
challenges still exist, such as those associated with free surfaces,
large deformation flows, mixed flow regimes, complex topogra-
phies and wet-dry interfaces (Liu and Liu, 2003).

In addition to the aforementioned grid-based methods, some
meshless methods have become increasingly popular. Among
them, smoothed particle hydrodynamics (SPH) is the most widely
adopted (Liu and Liu, 2003). SPH has many useful features for
hydrological modeling compared to the traditional grid-based
methods. For example, due to its Lagrangian nature, SPH is free
of numerical oscillations since there is no convective term (nonlin-
ear term) in the governing equations (Liu and Liu, 2003; Chang
et al., 2014), and mass is fully conserved (Vacondio et al., 2012a;
Chang et al., 2014). Mixed flow regimes incorporating subcritical,
transcritical, and supercritical flows can be efficiently handled
(Chang et al., 2011). Complex topographies can be easily evaluated
using bottom particles (Vacondio et al., 2012a), and no extra treat-
ment is needed for wet-dry interfaces. Previously, SPH solutions to
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SWEs have focused on modeling discharge flows in open channels
or floodplains without rainfall, such as studies that analyzed
inflow/outflow boundary conditions (Vacondio et al., 2011), a mod-
ified virtual boundary method for imposing closed boundary con-
ditions on arbitrary geometries (Vacondio et al., 2012a), non-
rectangular and non-prismatic channels (Chang and Chang,
2013), particle refinement for enhanced resolution (Vacondio
et al., 2012b), dam break flows (Chang et al., 2011), floodplain
overland flows (Kao and Chang, 2012), and mixed flow regimes
at open channel junctions (Chang and Chang, in press). Neverthe-
less, to the authors’ knowledge, studies have not extended SPH-
SWE modeling to the rainfall-runoff process.

Some difficulties are associated with using SPH to solve SWEs.
Unlike the three-dimensional (3D) Navier-Stokes Equations, SWEs
are two-dimensional (2D) depth-averaged equations in the x-y
plane or one-dimensional (1D) cross-section-averaged equations
(also called the Saint-Venant equations) in the streamwise direc-
tion l. Thus, no dimension exists for vertical rainfall inputs. There-
fore, mass-varied particles are used in the SPH-SWE in this study to
overcome this issue when modeling the model rainfall-runoff pro-
cess. Fig. 1 illustrates the concept of how mass-varied particles
work. In modeling discharge flows without rainfall, river flows
are discretized with water slide particles using a 1D SPH method
(Chang et al., 2011), while surface overland flows are discretized
with water column particles using a 2D SPH method (Kao and
Chang, 2012) (both are presented in blue1 in Fig. 1b). As rainfall
occurs, the additional masses are added to the water slides or col-
umns according to the product of their bottom area and the variation
in water depth (presented in orange in Fig. 1b). With this new treat-
ment, the SPH-SWE can address mass-varied flow fields, such as
rainfall, infiltration and lateral flows, without adding particles. Fur-
thermore, this treatment does not need to construct the source term
of mass variation in advance, which is helpful for encoding.

This paper is structured as follows. In Section 2, the SPH-SWE
numerical method is briefly introduced, and the derivation of the
solving procedure with mass-varied particles for modeling
rainfall-runoff process is presented in detail. In Section 3, the
numerical scheme is tested using measured rainfall hydrographs
at the outlets of 1D channels from Delestre et al. (2009) and
Iwagaki (1955) and flow velocity data from a 2D plot with complex
topography. The numerical convergence and accuracy are exam-
ined and discussed, and conclusions are made in the end.

2. Methodology

2.1. The shallow water equations

The Lagrangian forms of 1D SWEs in Eqs. (1) and (2) and the 2D
SWEs in Eqs. (3) and (4) are adopted to address fluid motion in this
study.
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In the above, Eqs. (1) and (3) are the continuity equations, while
Eqs. (2) and (4) are the momentum equations. In these equations, t
is the time, A is the wetted cross-section area, Q is the discharge, dw
is the water depth, R is the rainfall intensity, v is the horizontal
velocity vector (=v(u, v)), u is the x-component of v, v is the y com-
ponent of v, S0 is the bed slope, b is the bottom elevation, Sf (Sf) is
the friction slope, which is calculated according to either Man-
ning’s friction law (Kao and Chang, 2012; Chang and Chang,
2013) or the Darcy-Weisbach friction law (Delestre et al., 2009),
and g is the gravitational acceleration. The 1D SWEs govern the
wetted cross-section area and the water discharge, and the 2D
SWEs govern the water depth and the water velocity.

2.2. Water depth/cross-section wetted area evolution

In SPH, the scale function f(x) can be approximated as follows:

f i ¼
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j

mj

qj
f jW

i
ij ð5Þ

wheremj is the mass of particle j (=Dx0 � qjin 1D and Dx0 � Dy0 � qj in
2D); Dx0 and Dy0 are the initial particle spacings in the x- and
y-directions, respectively; qj is the density of particle j defined as
qw � A in 1D and qw � dw in 2D; qw is the constant water density
(1000 kg/m3); N is the number of particles within the support

domain of particle i; Wi
ij is the kernel function; andriW

i
ij is the first

derivative of the kernel function.
Based on Eq. (5), the density of particle i can be expressed as

follows.
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To obtain a more accurate solution of the density, the smooth-
ing length is varied based on Eq. (7), which is derived under the
assumption of a constant total particle mass within the particle
support domain (Springel and Hernquist, 2002):

hi ¼ h0;i
q0;i

qi

� �1=Dm

ð7Þ

where q0,i and h0,i are the initial density and smoothing length of
particle i, respectively, and Dm is the number of spatial dimensions.
Eq. (6) thereby becomes nonlinear. We use the Newton-Raphson
iteration method to solve Eq. (6) and obtain the density of each par-
ticle (Rodriguez-Paz and Bonet, 2005).

2.3. Using mass-varied particles and the modified smoothing length
updating formulation

As previously discussed, no extra dimension is available to
input rainfall particles when modeling the rainfall-runoff process
based on SWEs using traditional methods. However, the rainfall
process can be simulated by varying the water depth (which is
the particle density q) of each particle. Note that if we treat the
particle mass as a constant value, the mass and momentum conser-
vation of each particle cannot be achieved simultaneously because
the mass and momentum of the raindrop adds to the system. Thus,
the particle mass should be varied.

To reflect the rainfall effect on the evolution of the water depth
of a fluid particle, we transform the rainfall amount into the
increase of the mass of a fluid particle (Dm) based on Eq. (8):

Dm ¼ qDV ¼ qwDdwDV ¼ qwRDtDV ð8Þ
where V is the particle volume (=m/q) and Dt is the time step.

However, the use of mass-varied fluid particles violates the
assumption of constant mass in Eq. (7). We further assess the

1 For interpretation of color in Fig. 1, the reader is referred to the web version of
this article.

750 T.-J. Chang et al. / Journal of Hydrology 543 (2016) 749–758



Download English Version:

https://daneshyari.com/en/article/5771467

Download Persian Version:

https://daneshyari.com/article/5771467

Daneshyari.com

https://daneshyari.com/en/article/5771467
https://daneshyari.com/article/5771467
https://daneshyari.com

