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VARIATIONS ON A THEME BY HIGMAN

NICOLAS MONOD

ABSTRACT. We propose elementary and explicit presentations of groups that have no amenable
quotients and yet are SQ-universal. Examples include groups with a finite K(7,1), no Kazh-
dan subgroups and no Haagerup quotients.

1. INTRODUCTION

In 1951, G. Higman defined the group
1) Hig, = (a; (i € Z/nZ) : [ai_1,a;] = a;)

and proved that for n > 4 it is infinite without non-trivial finite quotient [9]. Since the
presentation (1) is explicit and simple, A. Thom suggested that Hig, is a good candidate to
contradict approximation properties for groups and proved such a result in [21]. Perhaps
the most elusive approximation property is still soficity [7, 22]; but a non-sofic group would
in particular not be residually amenable, a statement we do not know for the Higman groups
(cf. also [8]). The purpose of this note is to propound variations of Higman’s construction
with no non-trivial amenable quotients at all.

There are several known sources of groups without amenable quotients since it suffices to
take a (non-amenable) simple group to avoid all possible quotients. However, as Thelonius
Sphere Monk observed, simple ain’t easy. To wit, one had to wait until the break-through of
Burger—-Mozes [2, 3] for simple groups of type F, i.e. admitting a finite K(7r,1). Before this,
no torsion-free finitely presented simple groups were known.

The examples below are of a completely opposite nature because they admit a wealth of
quotients: indeed, like Hig,, they are SQ-universal, i.e. contain any countable group in a
suitable quotient. It follows that they have uncountably many quotients [14, §III], despite
having no amenable quotients.

We shall start with the easiest examples, whose cyclic structure is directly inspired by (1).
Below that, we propose a cleaner construction, starting from copies of Z only, which might
be a better candidate to contradict approximation properties; the price to pay is to replace
the cycle by a more complicated graph.

Disclaimer. No claim is made to produce the first examples of groups with a hodgepodge
of sundry properties (for instance, if G is a Burger-Mozes group, then G * G satisfies many
properties of G, in Theorem 2 below, though with “amenable” instead of “Haagerup”).
Our goal is to suggest transparent presentations for which the stated properties are explicit
and their proofs effective.
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