Orthogonality of compact operators

Paweł Wójcik
Institute of Mathematics, Pedagogical University of Cracow, Podchorą̇ych 2, 30-084 Kraków, Poland

Received 5 October 2015; received in revised form 11 February 2016

Abstract

In this paper we characterize the Birkhoff-James orthogonality for elements of $\mathcal{K}(X ; Y)$. In this way we extend the Bhatia-Šemrl theorem. As an application, we consider the approximate orthogonality preserving property. Moreover, we give a new characterization of inner product spaces. (C) 2016 Elsevier GmbH . All rights reserved.

MSC 2010: primary 46B20; secondary 47L25; 46B28; 46C50; 46C15
Keywords: Bounded linear operator; Birkhoff-James orthogonality; Semi inner product; Best approximation; Approximately orthogonality preserving operators

1. Introduction

We start with some notation which will be of use later. Let $(X,\|\cdot\|)$ be a normed space over $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$. By $S(X)$ we denote the unit sphere in a normed space X. If the norm comes from an inner product $\langle\cdot \mid \cdot\rangle$, there is one natural orthogonality relation: $x \perp y: \Leftrightarrow\langle x \mid y\rangle=0$. In general case, there are several notions of orthogonality and one of the most outstanding is the definition introduced by Birkhoff [4] (cf. also James [11]). For $x, y \in X$ we define:

$$
x \perp_{\text {В }} y \quad: \Leftrightarrow \quad \forall_{\lambda \in \mathbb{K}}: \quad\|x\| \leqslant\|x+\lambda y\| .
$$

[^0]http://dx.doi.org/10.1016/j.exmath.2016.06.003
0723-0869/(C) 2016 Elsevier GmbH. All rights reserved.

ARTICLE IN PRESS

This relation is clearly homogeneous, but neither symmetric nor additive, unless the norm comes from an inner product. Of course, in an inner product space we have $\perp_{B}=\perp$.

The dual space is denoted by X^{*}. It is easy to see that for two elements x, y of a normed linear space X, it holds $x \perp_{\mathrm{B}} y$ if and only if there is a norm one linear functional $f \in X^{*}$ such that $f(x)=\|x\|$ and $f(y)=0$. If we have additional structures on a normed linear space X, then we get other characterizations of the Birkhoff orthogonality. One of the first results of this form is the result obtained by Bhatia and Šemrl [2] for the Banach space $\mathcal{L}(\mathcal{H})$ of all bounded linear operators on a Hilbert space \mathcal{H}.

Theorem 1.1 ([2]). Let \mathcal{H} be a complex Hilbert space. Let $A, B \in \mathcal{L}(\mathcal{H})$. If $\operatorname{dim} \mathcal{H}<\infty$, then $A \perp_{B} B$ if and only if there is a unit vector $x \in \mathcal{H}$ such that $\|A x\|=\|A\|$ and $\langle A x \mid B x\rangle=0$.

In particular, Bhatia and Šemrl [2] proved that if X is a real or complex finitedimensional inner product space and $A, B \in \mathcal{L}(\mathcal{H})$ then

$$
\begin{equation*}
A \perp_{\mathrm{B}} B \Leftrightarrow \exists_{u \in S(X)}\|A u\|=\|A\|, \quad A u \perp_{\mathrm{B}} B u . \tag{1.1}
\end{equation*}
$$

In the paper [2] it is conjectured that (1.1) is valid for any finite-dimensional normed space $X . \mathrm{Li}$ and Schneider [14] give a counterexample to the above conjecture. They show that it does not hold for the space $X=l_{p}^{n}$, with $p \neq 2$. Benítez, Fernández and Soriano [1] extended this result. Namely, they proved the following theorem.

Theorem 1.2. A real finite-dimensional normed space X is an inner product space if and only if, for all $A, B \in \mathcal{L}(X)$ we have

$$
A \perp_{B} B \Leftrightarrow \exists_{u \in S(X)}\|A u\|=\|A\|, \quad A u \perp_{B} B u
$$

Remark 1. Bhattacharyya and Grover [3] gave another proof of the Bhatia-Šemrl theorem using tools of convex analysis. Namely, they considered a convex function $\varphi(t):=$ $\|A+t B\|$ and its subdifferential.

Let $\mathcal{L}(X ; Y)$ be the space of all linear, continuous operators from X into Y. In this paper, we prove similar criteria in the case $\mathcal{K}(X ; Y)$, where $\mathcal{K}(X ; Y)$ denotes the space of all compact operators going from a normed space X to a Banach space Y. In particular, we generalize Theorem 1.1.

2. Preliminaries

By $S(X)$ we denote the unit sphere in a normed space X and by $\operatorname{Ext}(S(X))$ the set of its extreme points. Even if the norm in X does not come from an inner product there always exists (as noticed by G. Lumer [15] and J.R. Giles [10], cf. also [9]) a mapping $[\cdot \cdot]: X \times X \rightarrow \mathbb{K}$ satisfying the properties:
(sip1) $\forall_{x, y, z \in X} \forall_{\alpha, \beta \in \mathbb{K}}:[\alpha x+\beta y \mid z]=\alpha[x \mid z]+\beta[y \mid z] ;$
(sip2) $\forall_{x, y \in X} \forall_{\alpha \in \mathbb{K}}: \quad[x \mid \alpha y]=\bar{\alpha}[x \mid y]$;
(sip3) $\forall_{x, y \in X}:|[x \mid y]| \leqslant\|x\| \cdot\|y\|$;
$(\operatorname{sip} 4) \forall_{x \in X}: \quad[x \mid x]=\|x\|^{2}$.

https://daneshyari.com/en/article/5771526

Download Persian Version:
https://daneshyari.com/article/5771526

Daneshyari.com

[^0]: E-mail address: pwojcik@up.krakow.pl.

