

Available online at www.sciencedirect.com

www.elsevier.com/locate/exmath

Orthogonality of compact operators

Paweł Wójcik

Institute of Mathematics, Pedagogical University of Cracow, Podchorążych 2, 30-084 Kraków, Poland

Received 5 October 2015; received in revised form 11 February 2016

Abstract

In this paper we characterize the Birkhoff–James orthogonality for elements of $\mathcal{K}(X; Y)$. In this way we extend the Bhatia–Šemrl theorem. As an application, we consider the approximate orthogonality preserving property. Moreover, we give a new characterization of inner product spaces. © 2016 Elsevier GmbH. All rights reserved.

MSC 2010: primary 46B20; secondary 47L25; 46B28; 46C50; 46C15

Keywords: Bounded linear operator; Birkhoff–James orthogonality; Semi inner product; Best approximation; Approximately orthogonality preserving operators

1. Introduction

We start with some notation which will be of use later. Let $(X, \|\cdot\|)$ be a normed space over $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$. By S(X) we denote the unit sphere in a normed space X. If the norm comes from an inner product $\langle \cdot | \cdot \rangle$, there is one natural orthogonality relation: $x \perp y : \Leftrightarrow \langle x | y \rangle = 0$. In general case, there are several notions of orthogonality and one of the most outstanding is the definition introduced by Birkhoff [4] (cf. also James [11]). For $x, y \in X$ we define:

 $x \perp_{\mathbf{B}} y : \Leftrightarrow \quad \forall_{\lambda \in \mathbb{K}} : \quad \|x\| \leqslant \|x + \lambda y\|.$

E-mail address: pwojcik@up.krakow.pl.

http://dx.doi.org/10.1016/j.exmath.2016.06.003 0723-0869/© 2016 Elsevier GmbH. All rights reserved.

Please cite this article in press as: P. Wójcik, Orthogonality of compact operators, Expo. Math. (2016), http://dx.doi.org/10.1016/j.exmath.2016.06.003

ARTICLE IN PRESS

P. Wójcik / Expo. Math. I (IIII) III-III

This relation is clearly homogeneous, but neither symmetric nor additive, unless the norm comes from an inner product. Of course, in an inner product space we have $\perp_B = \perp$.

The dual space is denoted by X^* . It is easy to see that for two elements x, y of a normed linear space X, it holds $x \perp_B y$ if and only if there is a norm one linear functional $f \in X^*$ such that f(x) = ||x|| and f(y) = 0. If we have additional structures on a normed linear space X, then we get other characterizations of the Birkhoff orthogonality. One of the first results of this form is the result obtained by Bhatia and Šemrl [2] for the Banach space $\mathcal{L}(\mathcal{H})$ of all bounded linear operators on a Hilbert space \mathcal{H} .

Theorem 1.1 ([2]). Let \mathcal{H} be a complex Hilbert space. Let $A, B \in \mathcal{L}(\mathcal{H})$. If dim $\mathcal{H} < \infty$, then $A \perp_B B$ if and only if there is a unit vector $x \in \mathcal{H}$ such that ||Ax|| = ||A|| and $\langle Ax|Bx \rangle = 0$.

In particular, Bhatia and Šemrl [2] proved that if X is a real or complex finitedimensional inner product space and A, $B \in \mathcal{L}(\mathcal{H})$ then

$$A \perp_{\mathbf{B}} B \Leftrightarrow \exists_{u \in S(X)} \|Au\| = \|A\|, \quad Au \perp_{\mathbf{B}} Bu.$$
(1.1)

In the paper [2] it is conjectured that (1.1) is valid for any finite-dimensional normed space X. Li and Schneider [14] give a counterexample to the above conjecture. They show that it does not hold for the space $X = l_p^n$, with $p \neq 2$. Benítez, Fernández and Soriano [1] extended this result. Namely, they proved the following theorem.

Theorem 1.2. A real finite-dimensional normed space X is an inner product space if and only if, for all $A, B \in \mathcal{L}(X)$ we have

$$A \perp_B B \Leftrightarrow \exists_{u \in S(X)} ||Au|| = ||A||, \quad Au \perp_B Bu.$$

Remark 1. Bhattacharyya and Grover [3] gave another proof of the Bhatia–Šemrl theorem using tools of convex analysis. Namely, they considered a convex function $\varphi(t) := ||A + tB||$ and its subdifferential.

Let $\mathcal{L}(X; Y)$ be the space of all linear, continuous operators from X into Y. In this paper, we prove similar criteria in the case $\mathcal{K}(X; Y)$, where $\mathcal{K}(X; Y)$ denotes the space of all compact operators going from a normed space X to a Banach space Y. In particular, we generalize Theorem 1.1.

2. Preliminaries

By S(X) we denote the unit sphere in a normed space X and by Ext(S(X)) the set of its extreme points. Even if the norm in X does not come from an inner product there always exists (as noticed by G. Lumer [15] and J.R. Giles [10], cf. also [9]) a mapping $[\cdot|\cdot] : X \times X \to \mathbb{K}$ satisfying the properties:

 $\begin{array}{l} (\operatorname{sip1}) \forall_{x,y,z \in X} \forall_{\alpha,\beta \in \mathbb{K}} : \ [\alpha x + \beta y|z] = \alpha [x|z] + \beta [y|z]; \\ (\operatorname{sip2}) \forall_{x,y \in X} \forall_{\alpha \in \mathbb{K}} : \ [x|\alpha y] = \overline{\alpha} [x|y]; \\ (\operatorname{sip3}) \forall_{x,y \in X} : \ [x|y] | \leqslant ||x|| \cdot ||y||; \\ (\operatorname{sip4}) \forall_{x \in X} : \ [x|x] = ||x||^2. \end{array}$

Please cite this article in press as: P. Wójcik, Orthogonality of compact operators, Expo. Math. (2016), http://dx.doi.org/10.1016/j.exmath.2016.06.003

Download English Version:

https://daneshyari.com/en/article/5771526

Download Persian Version:

https://daneshyari.com/article/5771526

Daneshyari.com