On the difference between permutation polynomials

Nurdagül Anbar ${ }^{\text {a,* }}$, Almasa Odz̆ak ${ }^{\mathrm{b}}$, Vandita Patel ${ }^{\mathrm{c}}$, Luciane Quoos ${ }^{\mathrm{d}}$, Anna Somoza ${ }^{\text {e,f }}$, Alev Topuzoğlu ${ }^{\text {g }}$
a Johann Radon Institute for Computational and Applied Mathematics,
Austrian Academy of Sciences, Altenbergerstrasse 69, 4040 Linz, Austria
${ }^{\text {b }}$ University of Sarajevo, Zmaja od Bosne 35, 71000 Sarajevo, Bosnia and
Herzegovina
${ }^{\text {c }}$ University of Warwick, Coventry CV4 7AL, UK
${ }^{\text {d }}$ Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
e Universitat Politècnica de Catalunya, Calle Jordi Girona, 1-3, 08034 Barcelona, Spain
${ }^{\mathrm{f}}$ Leiden University, Snellius building, Niels Bohrweg 1, 2300 RA Leiden, Netherlands
${ }^{\mathrm{g}}$ Sabancı University, MDBF, Orhanlı, Tuzla, 34956 İstanbul, Turkey

A R T I C L E I N F O

Article history:

Received 22 June 2017
Received in revised form 20
September 2017
Accepted 21 September 2017
Available online xxxx
Communicated by Stephen D. Cohen

$M S C$:

11 T 06
14H05

Keywords:
Carlitz rank
Chowla-Zassenhaus conjecture
Curves over finite fields
Permutation polynomials

A B S T R A C T

The well-known Chowla and Zassenhaus conjecture, proved by Cohen in 1990 , states that if $p>\left(d^{2}-3 d+4\right)^{2}$, then there is no complete mapping polynomial f in $\mathbb{F}_{p}[x]$ of degree $d \geq 2$. For arbitrary finite fields \mathbb{F}_{q}, a similar non-existence result was obtained recently by Işık, Topuzoğlu and Winterhof in terms of the Carlitz rank of f.
Cohen, Mullen and Shiue generalized the Chowla-Zassen-haus-Cohen Theorem significantly in 1995, by considering differences of permutation polynomials. More precisely, they showed that if f and $f+g$ are both permutation polynomials of degree $d \geq 2$ over \mathbb{F}_{p}, with $p>\left(d^{2}-3 d+4\right)^{2}$, then the degree k of g satisfies $k \geq 3 d / 5$, unless g is constant. In this article, assuming f and $f+g$ are permutation polynomials in $\mathbb{F}_{q}[x]$, we give lower bounds for the Carlitz rank of f in terms of q and k. Our results generalize the above mentioned result of Işık et al. We also show for a special class of per-

[^0]mutation polynomials f of Carlitz rank $n \geq 1$ that if $f+x^{k}$
is a permutation over \mathbb{F}_{q}, with $\operatorname{gcd}(k+1, q-1)=1$, then
$k \geq(q-n) /(n+3)$.
© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathbb{F}_{q} be the finite field with $q=p^{r}$ elements, where $r \geq 1$ and p is a prime. Throughout we assume $q \geq 3$. We recall that $f \in \mathbb{F}_{q}[x]$ is a permutation polynomial over \mathbb{F}_{q} if it induces a bijection from \mathbb{F}_{q} to \mathbb{F}_{q}. If $f(x)$ and $f(x)+x$ are both permutation polynomials over \mathbb{F}_{q}, then f is called a complete mapping. We refer the reader to [11] for a detailed study of complete mapping polynomials over finite fields. Their use in the construction of mutually orthogonal Latin squares is described, for instance, in [9]. For various other applications, see [10,12-14]. Recent work on generalizations of complete mappings can be found in [17].

Theorem 1 below was conjectured by Chowla and Zassenhaus [3] in 1968, and proved by Cohen [4] in 1990.

Theorem 1. ([4, Theorem 1]) If $d \geq 2$ and $p>\left(d^{2}-3 d+4\right)^{2}$, then there is no complete mapping polynomial of degree d over \mathbb{F}_{p}.

A significant generalization of this result was obtained by Cohen, Mullen and Shiue [5] in 1995, and gives a lower bound for the degree of the difference of two permutation polynomials in $\mathbb{F}_{p}[x]$ of the same degree d, when $p>\left(d^{2}-3 d+4\right)^{2}$.

Theorem 2. ([5, Theorem 2]) Suppose f and $f+g$ are monic permutation polynomials over \mathbb{F}_{p} of degree $d \geq 3$, where $p>\left(d^{2}-3 d+4\right)^{2}$. Then either $\operatorname{deg}(g)=0$ or $\operatorname{deg}(g) \geq$ $3 d / 5$.

An alternative invariant, the so-called Carlitz rank, attached to permutation polynomials, was recently used by Işık, Topuzoğlu and Winterhof [8] to obtain a non-existence result, similar to that in Theorem 1. The concept of Carlitz rank was first introduced in [1]. We describe it here briefly. The interested reader may see [16] for details.

By a well-known result of Carlitz [2] that any permutation polynomial over $\mathbb{F}_{q}, q \geq 3$, is a composition of linear polynomials $a x+b, a, b \in \mathbb{F}_{q}, a \neq 0$, and x^{q-2}, any permutation f over \mathbb{F}_{q} can be represented by a polynomial of the form

$$
\begin{equation*}
P_{n}(x)=\left(\ldots\left(\left(a_{0} x+a_{1}\right)^{q-2}+a_{2}\right)^{q-2} \ldots+a_{n}\right)^{q-2}+a_{n+1} \tag{1.1}
\end{equation*}
$$

for some $n \geq 0$, where $a_{i} \neq 0$, for $i=0,2, \ldots, n$. Note that $f(c)=P_{n}(c)$ holds for all $c \in \mathbb{F}_{q}$, however this representation is not unique, and n is not necessarily minimal.

https://daneshyari.com/en/article/5771540

Download Persian Version:

https://daneshyari.com/article/5771540

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: nurdagulanbar2@gmail.com (N. Anbar), almasa.odzak@gmail.com (A. Odz̆ak), vandita.patel@warwick.ac.uk (V. Patel), luciane@im.ufrj.br (L. Quoos), anna.somoza@upc.edu
 (A. Somoza), alev@sabanciuniv.edu (A. Topuzoğlu).

