# Number of rational branches of a singular plane curve over a finite field 

Nazar Arakelian<br>Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Avenida dos Estados, 5001, CEP 09210-580, Santo André, SP, Brazil

## A R T I C L E I N F O

## Article history:

Received 20 January 2017
Received in revised form 17 July 2017
Accepted 19 July 2017
Available online 8 August 2017
Communicated by Neal Koblitz

## MSC:

primary 11 G 20 , 14 H 05 , 14 H 50
secondary 14 HXX


#### Abstract

Let $\mathcal{F}$ be a plane singular curve defined over a finite field $\mathbb{F}_{q}$. Via results of [11] and [1], the linear system of plane curves of a given degree passing through the singularities of $\mathcal{F}$ provides potentially good bounds for the number of points on a nonsingular model of $\mathcal{F}$. In this note, the case of a curve with two singularities such that the sum of their multiplicities is precisely the degree of the curve is investigated in more depth. In particular, such plane models are completely characterized, and for $p>3$, a curve of this type attaining one of the obtained bounds is presented.


© 2017 Elsevier Inc. All rights reserved.

Keywords:
Algebraic curves
Rational points
Finite fields

## 1. Introduction

For a prime number $p$, let $\mathbb{F}_{q}$ be the finite field with $q$ elements, where $q$ is a power of $p$. Let $\mathcal{F}$ be a (projective, geometrically irreducible, algebraic) plane curve of degree $d$, genus $\mathfrak{g}$, defined over $\mathbb{F}_{q}$. Denote by $N_{m}(\mathcal{F})$ the number of $\mathbb{F}_{q^{m} \text {-rational points on a }}$


[^0]where $m \geq 1$ is an integer. One of the most challenging problems regarding $\mathcal{F}$ is the determination of the number $N_{m}(\mathcal{F})$ in terms of $q, d, \mathfrak{g}$ and other covariants. In fact, there are only few families of curves for which such an explicit formula for $N_{m}(\mathcal{F})$ is known, see $[3,4,6,9]$ for instance. This fact has been motivating the search for estimates for $N_{m}(\mathcal{F})$ over the last years. The most remarkable of them is the Hasse-Weil bound, presented by A. Weil in the 1940s, which states
\[

$$
\begin{equation*}
\left|N_{m}(\mathcal{F})-\left(q^{m}+1\right)\right| \leq 2 \mathfrak{g} \sqrt{q^{m}} \tag{1}
\end{equation*}
$$

\]

Introduced in 1986, the Stöhr-Voloch technique is also one of the most significant approaches to estimate $N_{m}(\mathcal{F})$ [11]. This technique depends on the linear series of the curve. More precisely, let $g_{n}^{r}$ be a base-point-free linear series on $\mathcal{F}$ of degree $n$ and dimension $r$, defined over $\mathbb{F}_{q^{m}}$. The Stöhr-Voloch main theorem [11, Theorem 2.13] states that, associated to $g_{n}^{r}$ and $q^{m}$, there exists a sequence of non-negative integers $\left(\nu_{0}, \ldots, \nu_{r-1}\right)$, with $0=\nu_{0}<\cdots<\nu_{r-1}$, such that

$$
\begin{equation*}
N_{m}(\mathcal{F}) \leq \frac{\left(\nu_{1}+\cdots+\nu_{r-1}\right)(2 \mathfrak{g}-2)+\left(q^{m}+r\right) n}{r} \tag{2}
\end{equation*}
$$

The bound (2) improves the Hasse-Weil bound in many instances (see [11]). In [1] a bound obtained via a variation of Stöhr-Voloch method is presented: if $g_{n}^{r}$ is defined over $\mathbb{F}_{q}$, given positive integers $u, m$ with $u<m$ and $\operatorname{gcd}(u, m)=1$, there are positive integers $c_{i}$ (depending on $i$ and $g_{n}^{r}$ ) with $i=1, u, m, m-u$, such that

$$
\begin{align*}
& \left(c_{1}-c_{u}-c_{m}-c_{m-u}\right) N_{1}(\mathcal{F})+c_{u} N_{u}(\mathcal{F})+c_{m} N_{m}(\mathcal{F})+c_{m-u} N_{m-u}(\mathcal{F})  \tag{3}\\
\leq & \left(\kappa_{0}+\cdots+\kappa_{r-2}\right)(2 \mathfrak{g}-2)+\left(q^{u}+q^{m}+r-1\right) n,
\end{align*}
$$

where $\left(\kappa_{0}, \ldots, \kappa_{r-2}\right)$ is a sequence of non-negative integers, which depends also on $g_{n}^{r}$, such that $0 \leq \kappa_{0}<\cdots<\kappa_{r-2}$, see [1, Theorem 4.4]. Here, we have $c_{1} \geq q^{u}+2(r-1)$ and $c_{m-u} \geq q^{u}$, and these numbers can be bigger, depending on some properties of $\mathcal{F}$ and $g_{n}^{r}$. As shown in [1], the bound (3) improves Hasse-Weil and Stöhr-Voloch bounds in many situations.

It can be seen directly from (2) that the application of the Stöhr-Voloch method to a linear series $g_{n}^{r}$ such that $r$ is large compared to $n$, has good chances to yield efficient upper bounds for the number of rational points on a non-singular model of the curve. The same holds for bound (3). In this sense, given a plane singular curve $\mathcal{F}$, we show that the bounds for the number of its rational branches arising from linear systems of plane curves of the same degree passing through the singularities of $\mathcal{F}$ are potentially $\operatorname{good}($ Section 3$)$. The case where $\mathcal{F}$ satisfies the following property is investigated more in depth (Section 4):
(H) $\mathcal{F}$ has at least two singularities $P_{1}$ and $P_{2}$ defined over $\mathbb{F}_{q}$ with multiplicities $r_{1}$ and $r_{2}$, respectively, such that $r_{1}+r_{2}=d$.

# https://daneshyari.com/en/article/5771553 

Download Persian Version:
https://daneshyari.com/article/5771553

## Daneshyari.com


[^0]:    E-mail address: n.arakelian@ufabc.edu.br.

