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Let Xn be a hypersurface in Pn+1 with n ≥ 2 defined over a 
finite field. The main result of this note is the classification, 
up to projective equivalence, of hypersurfaces Xn without a 
linear component when the number of their rational points 
achieves the Homma–Kim bound.
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1. Introduction

In a series of papers [4–6], Homma and Kim settled the Sziklai conjecture [11] for plane 
curves. In particular, as a consequence of their results one can deduce that for any plane 
curve C of degree d over a finite field Fq of q elements without Fq-linear components, 
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the number Nq(C) of Fq-points of C is bounded by Nq(C) ≤ (d − 1)q + 2 and equality 
holds if and only if d = q = 4 and C is projectively equivalent to the plane curve
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In [7] the authors establish also an upper bound for the number Nq(Xn) of Fq-points 
of a hypersurface Xn ⊂ Pn+1 of degree d and dimension n ≥ 2 defined over Fq and 
without an Fq-linear component which is an analogous to their bound for a plane curve. 
Moreover, they show that their upper bound

Θd,q
n := (d− 1)qn + dqn−1 + qn−2 + · · · + q + 1

is the best one for irreducible hypersurfaces that is linear on their degrees, because, for 
each finite field, they give three nonsingular surfaces of different degrees that reach their 
bound.

In line with the above results for plane curves we characterize, up to projective equiva-
lence, all the hypersurfaces Xn ⊂ Pn+1 defined over Fq and without Fq-linear components 
which reach the Homma–Kim bound Θd,q

n by proving the following classification result.

Theorem 1. Let Xn ⊂ Pn+1 be a hypersurface of degree d ≥ 2 and dimension n ≥ 2
defined over Fq and without Fq-linear components. Then Nq(Xn) ≤ Θd,q

n and equality 
holds if and only if d ≤ q + 1 and one of the following possibilities occurs:

(1) d = q + 1 and Xn is a space-filling hypersurface

(X0, . . . , Xn+1) A t(Xq
0 , . . . , X

q
n+1) = 0,

where A = (aij)i,j=1,...,n+2 is an (n + 2) × (n + 2) matrix such that tA = −A and 
akk = 0 for every k = 1, . . . , n + 2; moreover, Xn is nonsingular if and only if 
detA �= 0;

(2) d = √
q + 1 and Xn is projectively equivalent to a cone over the nonsingular Hermi-

tian surface
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(3) d = 2 and Xn is projectively equivalent to a cone over the hyperbolic quadric surface

X0X2 + X1X3 = 0.

Finally, in the nonsingular case, we obtain the following immediate consequence of 
Theorem 1.
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