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Recently, linear codes constructed from defining sets have 
been studied extensively. They may have excellent parameters 
if the defining set is chosen properly. Let m > 2 be a positive 
integer. For an odd prime p, let r = pm and Tr be the 
absolute trace function from Fr onto Fp. In this paper, we 
give a construction of linear codes by defining the code

CD = {(Tr(ax))x∈D : a ∈ Fr},

where D = {x ∈ Fr : Tr(x) = 1,Tr(x2) = 0}. Its complete 
weight enumerator and weight enumerator are determined 
explicitly by employing cyclotomic numbers and Gauss sums. 
However, we find that the code is optimal with respect to the 
Griesmer bound provided that m = 3. In fact, it is MDS 
when m = 3. Moreover, the codes presented have higher 
rate compared with other codes, which enables them to have 
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essential applications in areas such as association schemes and 
secret sharing schemes.

© 2017 Published by Elsevier Inc.

1. Introduction

Throughout this paper, let p be an odd prime, and let r = pm for a positive integer 
m > 2. Denote by Fr a finite field with r elements. The absolute trace function is 
denoted by Tr. An [n, k, d] linear code C over Fp is a k-dimensional subspace of Fn

p

with minimum distance d. The fraction k/n is called the rate, or information rate, and 
gives a measure of the number of information coordinates relative to the total number of 
coordinates. The higher the rate, the higher the proportion of coordinates in a codeword 
actually contain information rather than redundancy (see [1]). The complete weight 
enumerator of a code C over Fp, will enumerate the codewords according to the number 
of symbols of each kind contained in each codeword (see [2]). Denote elements of the 
field by Fp = {z0, z1, · · · , zp−1}, where z0 = 0. For a vector v = (v0, v1, · · · , vn−1) ∈ Fn

p , 
the composition of v, denoted by comp(v), is defined as

comp(v) = (k0, k1, · · · , kp−1),

where kj is the number of components vi (0 � i � n − 1) of v that equal to zj . It is easy 
to see that 

∑p−1
j=0 kj = n. Let A(k0, k1, · · · , kp−1) be the number of codewords c ∈ C

with comp(c) = (k0, k1, · · · , kp−1). Then the complete weight enumerator of the code C
is the polynomial

CWE(C) =
∑
c∈C

zk0
0 zk1

1 · · · zkp−1
p−1

=
∑

(k0,k1,··· ,kp−1)∈Bn

A(k0, k1, · · · , kp−1)zk0
0 zk1

1 · · · zkp−1
p−1 ,

where Bn = {(k0, k1, · · · , kp−1) : 0 � kj � n, 
∑p−1

j=0 kj = n}. One sees that the key to 
determining CWE(C) of a code C is determining those comp(c) and A(k0, k1, · · · , kp−1)
such that A(k0, k1, · · · , kp−1) �= 0.

The complete weight enumerators of linear codes have been of fundamental impor-
tance to theories and practices since they not only give the weight enumerators but also 
demonstrate the frequency of each symbol appearing in each codeword. Blake and Kith 
investigated the complete weight enumerator of Reed–Solomon codes and showed that 
they could be helpful in soft decision decoding [3,4]. Kuzmin and Nechaev studied the 
generalized Kerdock code and related linear codes over Galois rings and estimated their 
complete weight enumerators in [5] and [6]. Nebe et al. [7] described the complete weight 
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