Algebraic Cayley graphs over finite local rings

Arnisa Rasri, Yotsanan Meemark *
Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand

A R T I C L E I N F O

Article history:

Received 3 February 2017
Received in revised form 28 May 2017
Accepted 4 August 2017
Available online xxxx
Communicated by Daqing Wan

$M S C$:

11L40
05C75

Keywords:
Algebraic Cayley graphs
Expander graphs
Weil's bound

Abstract

In this work, we define and study the algebraic Cayley directed graph over a finite local ring. Its vertex set is the unit group of a finite extension of a finite local ring R and its adjacency condition is that the quotient is a monic primary polynomial. We investigate its connectedness and diameter bound, and we also show that our graph is an expander graph. In addition, if a local ring has nilpotency two, then we obtain a better view of our graph from the lifting of the graph over its residue field. © 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let R be a finite commutative local ring with maximal ideal M and residue field $\mathbb{k}=R / M$ equipped with the reduction map ${ }^{-}: R \longrightarrow \mathbb{k}$. A polynomial in $R[x]$ is regular if its reduction is not zero in the residue field. Let $f(x)$ be a primary regular non-unit polynomial in $R[x]$. That is, its reduction $\bar{f}(x)$ is a power of an irreducible polynomial in $\mathbb{k}[x]$. By Hensel's lemma,

[^0]$$
f(x)=\delta(x) \pi(x)^{s}+\beta(x)
$$
where $s \in \mathbb{N}, \delta(x)$ is a unit, $\beta(x) \in M[x]$ and $\pi(x)$ is a monic irreducible polynomial in $R[x]$ of degree $n \in \mathbb{N}$ such that its reduction $\bar{\pi}(x)$ is irreducible in $\mathbb{k}[x]$. Let I denote the principal ideal generated by $f(x)$. It follows from Theorem 4.3.2 of [1] that $R[x] / I$ is a local ring of order $|R|^{n s}$ with maximal ideal
\[

$$
\begin{aligned}
\mathcal{M}= & \langle M, \pi(x)\rangle / I \\
= & \{h(x)+\pi(x) g(x)+I: h(x) \in M[x], g(x) \in R[x], \operatorname{deg} h(x)<n, \\
& \operatorname{deg} g(x)<n(s-1)\},
\end{aligned}
$$
\]

so that $|\mathcal{M}|=|M|^{n}|R|^{n(s-1)}$. Moreover, the quotient field

$$
R[x] / I /\langle M, \pi(x)\rangle / I \cong R[x] /\langle M, \pi(x)\rangle \cong \mathbb{k}[x] /\langle\bar{\pi}(x)\rangle,
$$

and the canonical map is given by

$$
\mu(g(x)+I)=\bar{g}(x)+\langle\bar{\pi}(x)\rangle
$$

for all $g(x) \in R[x]$. Write $\Gamma_{f}(R)$ for the unit group $(R[x] / I)^{\times}$. Then

$$
\left|\Gamma_{f}(R)\right|=|R|^{n s}-|\mathcal{M}|=|R|^{n(s-1)}\left(|R|^{n}-|M|^{n}\right)
$$

Assume that $n>1$. For $1 \leq d<n$, let $P_{d}(R)$ be the set of monic primary polynomials of degree d in $R[x]$. Define the Cayley graph $G_{d}(R, f)$ as follows. The vertex set is $\Gamma_{f}(R)$ and there is a directed edge from $g_{1}(x)+I$ to $g_{2}(x)+I$ if and only if $\left(g_{2}(x)+I\right)\left(g_{1}(x)+I\right)^{-1}$ is in $P_{d}(R)+I$, the set of cosets of I with representatives in $P_{d}(R)$. This graph depends on three parameters, namely, d, R, f. It is a regular graph of degree $\left|P_{d}(R)\right|$. Since $d<n$, $P_{d}(R)+I$ is a subset of $\Gamma_{f}(R)$ and $\left|P_{d}(R)+I\right|=\left|P_{d}(R)\right|$. Note that the cardinality of $P_{d}(R)$ is equal to the number of the liftings of monic primary polynomials of degree d in $\mathbb{k}[x]$. Hence,

$$
\left|P_{d}(R)\right|=|M|^{d}\left|P_{d}(\mathbb{k})\right|,
$$

where $P_{d}(\mathbb{k})$ is the set of monic primary polynomials of degree d in $\mathbb{k}[x]$. Moreover,

$$
\left|P_{d}(\mathbb{k})\right|=\sum_{l \mid d} \frac{1}{l} \sum_{m \mid l} \mu(m)|\mathbb{k}|^{\frac{l}{m}} \sim \frac{|\mathbb{k}|^{d}}{d}
$$

where μ is the Möbius function. If R is a finite field and $f(x)$ is an irreducible polynomial, then the graph $G_{d}(R, f)$ reduces to $G_{d}(\mathbb{k}, \bar{\pi})$, which has been studied by Lu et al. [4]. Their idea came from Chung's graphs $G_{1}(\mathbb{k}, \bar{\pi})$ [2]. Recently, Huang and Liu [3]

https://daneshyari.com/en/article/5771561

Download Persian Version:

https://daneshyari.com/article/5771561

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: arnisarasri@gmail.com (A. Rasri), yotsanan.m@chula.ac.th (Y. Meemark).

