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Let Fq be the finite field with q elements. Given an N -tuple 
Q ∈ FN

q , we associate with it an affine plane curve CQ over Fq. 
We consider the distribution of the quantity q−#Cq,Q where 
#Cq,Q denotes the number of Fq-points of the affine curve CQ, 
for families of curves parameterized by Q. Exact formulae for 
first and second moments are obtained in several cases when 
Q varies over a subset of FN

q . Families of Fermat type curves, 
Hasse–Davenport curves and Artin–Schreier curves are also 
considered and results are obtained when Q varies along a 
straight line.
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1. Introduction

Given an elliptic curve E over the finite field Fq with q elements, the number of points 
of E over Fq can be expressed as q+1 −TE , where TE is the trace of the Frobenius of E. 
A classical result of Hasse [7] states that

|TE | ≤ 2√q.

Questions on the distribution of the number of points have been studied by a number 
of authors. In particular, for a fixed Fq, one can consider the trace distribution of a 
family of elliptic curves. Let Eq,a,b denote the elliptic curve with Weierstrass form y2 =
x3 + ax + b, and let TEq,a,b

denote the trace of Frobenius of Eq,a,b. In [2], Birch gave 
asymptotic formulae for the average of even moments 

∑
a,b∈Fq

T 2R
Eq,a,b

by using the Selberg 
trace formula. More recently, in [8], He and Mc Laughlin obtained exact formulae for ∑

a∈Fp
T 2
Ep,a,b

when the field is taken to be the prime field Fp. For a smooth algebraic 
curve C over Fq of genus g, a well known theorem of Weil [11] states that

|q + 1 − #Cq| ≤ 2g√q, (1)

where #Cq denotes the number of Fq-points of the projective curve. As with the case of 
elliptic curves where g = 1, the distribution of the quantity TCq

:= q + 1 − #Cq has also 
attracted attention. In the present paper, we establish exact formulae for the first and 
second moments of analogous quantities to TCq

over some general families of affine plane 
curves over a finite field Fq.

For fixed non-negative integers ai, bi, i ∈ {1, 2, . . . , N} and an N -tuple

Q = (c1, c2, . . . , cN ) ∈ FN
q ,

we associate with it a plane curve CQ whose affine model is given by

CQ :
N∑
i=1

cix
aiybi = 0. (2)

We set TQ = q − #CQ, where #CQ denotes the number of Fq-points, which are the 
Fq-solutions (x, y) to the defining equation (2) of CQ. We will use points or solutions 
instead of Fq-points or Fq-solutions for short later on. Note that if we homogenize equa-
tion (2), then the points at infinity are determined by the highest degree homogeneous 
equation in x and y. For elliptic curves in Weierstrass form, there is only one point at 
infinity, and our definition of TQ matches the usual definition of TQ as q + 1 − #PC, 
where #PC is the number of point on the projective curve associated to C. In either case, 
TQ measures the difference between the number of points on the curve and the expected 
value. Given a subset S ⊆ FN

q , we are interested in the distribution of TQ as Q ranges 
over S. In particular, we consider the variance of TQ for Q ∈ S,
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