

Contents lists available at ScienceDirect

Finite Fields and Their Applications

www.elsevier.com/locate/ffa

Exact evaluation of second moments associated with some families of curves over a finite field

Ravi Donepudi^a, Junxian Li^{a,*}, Alexandru Zaharescu^{b,a}

- ^a Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, IL 61801, USA
- ^b Simion Stoilow Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, RO-014700 Bucharest, Romania

ARTICLE INFO

Article history:
Received 29 February 2016
Received in revised form 1 August 2017
Accepted 17 August 2017
Available online 5 September 2017
Communicated by James W.P.
Hirschfeld

MSC: primary 11T23 secondary 11T99

Keywords:
Families of polynomials
Curves over finite fields
Exponential sums
Exact formulae

ABSTRACT

Let \mathbb{F}_q be the finite field with q elements. Given an N-tuple $Q \in \mathbb{F}_q^N$, we associate with it an affine plane curve \mathcal{C}_Q over \mathbb{F}_q . We consider the distribution of the quantity $q - \#\mathcal{C}_{q,Q}$ where $\#\mathcal{C}_{q,Q}$ denotes the number of \mathbb{F}_q -points of the affine curve \mathcal{C}_Q , for families of curves parameterized by Q. Exact formulae for first and second moments are obtained in several cases when Q varies over a subset of \mathbb{F}_q^N . Families of Fermat type curves, Hasse–Davenport curves and Artin–Schreier curves are also considered and results are obtained when Q varies along a straight line.

© 2017 Elsevier Inc. All rights reserved.

 $E\text{-}mail\ addresses:$ donepud
2@illinois.edu (R. Donepudi), jli
135@illinois.edu (J. Li), zaharesc
@illinois.edu (A. Zaharescu).

^{*} Corresponding author.

1. Introduction

Given an elliptic curve E over the finite field \mathbb{F}_q with q elements, the number of points of E over \mathbb{F}_q can be expressed as $q+1-T_E$, where T_E is the trace of the Frobenius of E. A classical result of Hasse [7] states that

$$|T_E| \leq 2\sqrt{q}$$
.

Questions on the distribution of the number of points have been studied by a number of authors. In particular, for a fixed \mathbb{F}_q , one can consider the trace distribution of a family of elliptic curves. Let $E_{q,a,b}$ denote the elliptic curve with Weierstrass form $y^2 = x^3 + ax + b$, and let $T_{E_{q,a,b}}$ denote the trace of Frobenius of $E_{q,a,b}$. In [2], Birch gave asymptotic formulae for the average of even moments $\sum_{a,b\in\mathbb{F}_q} T_{E_{q,a,b}}^{2R}$ by using the Selberg trace formula. More recently, in [8], He and Mc Laughlin obtained exact formulae for $\sum_{a\in\mathbb{F}_p} T_{E_{p,a,b}}^2$ when the field is taken to be the prime field \mathbb{F}_p . For a smooth algebraic curve $\mathcal C$ over \mathbb{F}_q of genus g, a well known theorem of Weil [11] states that

$$|q+1-\#\mathcal{C}_q| \le 2g\sqrt{q},\tag{1}$$

where $\#\mathcal{C}_q$ denotes the number of \mathbb{F}_q -points of the projective curve. As with the case of elliptic curves where g=1, the distribution of the quantity $T_{\mathcal{C}_q}:=q+1-\#\mathcal{C}_q$ has also attracted attention. In the present paper, we establish exact formulae for the first and second moments of analogous quantities to $T_{\mathcal{C}_q}$ over some general families of affine plane curves over a finite field \mathbb{F}_q .

For fixed non-negative integers $a_i, b_i, i \in \{1, 2, ..., N\}$ and an N-tuple

$$Q = (c_1, c_2, \dots, c_N) \in \mathbb{F}_q^N,$$

we associate with it a plane curve \mathcal{C}_Q whose affine model is given by

$$C_Q: \sum_{i=1}^{N} c_i x^{a_i} y^{b_i} = 0.$$
 (2)

We set $T_Q = q - \#\mathcal{C}_Q$, where $\#\mathcal{C}_Q$ denotes the number of \mathbb{F}_q -points, which are the \mathbb{F}_q -solutions (x,y) to the defining equation (2) of \mathcal{C}_Q . We will use points or solutions instead of \mathbb{F}_q -points or \mathbb{F}_q -solutions for short later on. Note that if we homogenize equation (2), then the points at infinity are determined by the highest degree homogeneous equation in x and y. For elliptic curves in Weierstrass form, there is only one point at infinity, and our definition of T_Q matches the usual definition of T_Q as $q + 1 - \#\mathcal{PC}$, where $\#\mathcal{PC}$ is the number of point on the projective curve associated to \mathcal{C} . In either case, T_Q measures the difference between the number of points on the curve and the expected value. Given a subset $S \subseteq \mathbb{F}_q^N$, we are interested in the distribution of T_Q as Q ranges over S. In particular, we consider the variance of T_Q for $Q \in S$,

Download English Version:

https://daneshyari.com/en/article/5771568

Download Persian Version:

https://daneshyari.com/article/5771568

<u>Daneshyari.com</u>