

Contents lists available at ScienceDirect

Finite Fields and Their Applications

www.elsevier.com/locate/ffa

A strongly regular decomposition of the complete graph and its association scheme

Hadi Kharaghani^a, Sara Sasani^a, Sho Suda^{b,*}

 ^a Department of Mathematics and Computer Science, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
^b Department of Mathematics Education, Aichi University of Education,

1 Hirosawa, Igaya-cho, Kariya, Aichi 448-8542, Japan

ARTICLE INFO

Article history: Received 19 January 2017 Received in revised form 2 August 2017 Accepted 31 August 2017 Available online 9 September 2017 Communicated by L. Storme

MSC: 05E30

Keywords: Symmetric design Strongly regular graph Strongly regular decomposition Association scheme Generalized Hadamard matrix Symmetric Latin square

ABSTRACT

For any positive integer m, the complete graph on $2^{2m}(2^m+2)$ vertices is decomposed into 2^m+1 commuting strongly regular graphs, which give rise to a symmetric association scheme of class $2^{m+2} - 2$. Furthermore, the eigenmatrices of the symmetric association schemes are determined explicitly. As an application, the eigenmatrix of the commutative strongly regular decomposition obtained from the strongly regular graphs is derived.

 \odot 2017 Elsevier Inc. All rights reserved.

^{*} Corresponding author.

E-mail addresses: kharaghani@uleth.ca (H. Kharaghani), sasani@uleth.ca (S. Sasani), suda@auecc.aichi-edu.ac.jp (S. Suda).

1. Introduction

A strongly regular graph with parameters (v, k, λ, μ) is a regular graph with v vertices of degree k such that every two adjacent vertices have exactly λ common neighbors and every two non-adjacent vertices have exactly μ common neighbors. A strongly regular decomposition is a decomposition of the edge set of the complete graph with vertex set V into strongly regular graphs with vertex set V. A strongly regular decomposition is commutative if the adjacency matrices of strongly regular graphs are commutative. The concept of strongly regular decomposition was introduced by van Dam [2] in order to study more general situation of amorphous association schemes.

In this paper, we show that for any positive integer m, there is a commutative strongly regular decomposition of the complete graph of $2^{2m}(2^m + 2)$ vertices, into 2^m strongly regular graphs with parameters $(2^{2m}(2^m + 2), 2^{2m} + 2^m, 2^m, 2^m)$ and $2^m + 2$ cliques of size 2^{2m} . Note that $2^m + 2$ cliques of size 2^{2m} is a strongly regular graph with parameters $(2^{2m}(2^m + 2), 2^{2m} - 1, 2^{2m} - 2, 0)$. In fact, the constructed strongly regular graphs with parameters $(2^{2m}(2^m + 2), 2^{2m} - 1, 2^{2m} - 2, 0)$. In fact, the constructed strongly regular graphs with parameters $(2^{2m}(2^m + 2), 2^{2m} + 2^m, 2^m, 2^m)$ are symmetric $(2^{2m}(2^m + 2), 2^{2m} + 2^m, 2^m)$ -designs with symmetric incidence matrices with very large number of symmetries. Our construction method is due to Wallis [5] (see also [4, Theorem 5.23]) based on the generalized Hadamard matrices obtained from finite fields of characteristic two and symmetric Latin squares with constant diagonal of even order.

One might wonder if the decomposition yields a symmetric association scheme, but unfortunately this does not hold. We had to further decompose the edge sets of the strongly regular graphs in order to obtain a symmetric association scheme, and to determine the eigenmatrices of the symmetric association scheme explicitly. As a corollary, we obtain the eigenmatrix of the commutative strongly regular decomposition.

2. Preliminaries

Let n be a positive integer. Let V be a finite set of size v and R_i $(i \in \{0, 1, ..., n\})$ be a non-empty subset of $V \times V$. The *adjacency matrix* A_i of the graph with vertex set V and edge set R_i is a $v \times v$ (0, 1)-matrix with rows and columns indexed by the elements of V such that $(A_i)_{xy} = 1$ if $(x, y) \in R_i$ and $(A_i)_{xy} = 0$ otherwise. The pair $(V, \{R_i\}_{i=0}^n)$ is said to be a *commutative decomposition* of the complete graph if the following hold:

- (i) $A_0 = I_v$, the identity matrix of order v.
- (ii) $\sum_{i=0}^{n} A_i = J_v$, the all-ones matrix of order v.
- (iii) A_i is symmetric for $i \in \{1, \ldots, n\}$.
- (iv) For any $i, j, A_i A_j = A_j A_i$.

We also refer to the set of non-zero $v \times v$ (0, 1)-matrices satisfying (i)-(iv) as a commutative decomposition. Note that the corresponding graph of each A_i is regular, because A_i and $J_v = \sum_{i=0}^n A_i$ commute. Let k_i denote the valency of the corresponding graph of A_i . Download English Version:

https://daneshyari.com/en/article/5771569

Download Persian Version:

https://daneshyari.com/article/5771569

Daneshyari.com