A strongly regular decomposition of the complete graph and its association scheme

Hadi Kharaghani ${ }^{\text {a }}$, Sara Sasani ${ }^{\text {a }}$, Sho Suda ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematics and Computer Science, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
${ }^{\text {b }}$ Department of Mathematics Education, Aichi University of Education, 1 Hirosawa, Igaya-cho, Kariya, Aichi 448-8542, Japan

A R T I C L E I N F O

Article history:

Received 19 January 2017
Received in revised form 2 August 2017
Accepted 31 August 2017
Available online 9 September 2017
Communicated by L. Storme

MSC:

05E30

Keywords:
Symmetric design
Strongly regular graph
Strongly regular decomposition
Association scheme
Generalized Hadamard matrix
Symmetric Latin square

Abstract

For any positive integer m, the complete graph on $2^{2 m}\left(2^{m}+2\right)$ vertices is decomposed into $2^{m}+1$ commuting strongly regular graphs, which give rise to a symmetric association scheme of class $2^{m+2}-2$. Furthermore, the eigenmatrices of the symmetric association schemes are determined explicitly. As an application, the eigenmatrix of the commutative strongly regular decomposition obtained from the strongly regular graphs is derived. © 2017 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

A strongly regular graph with parameters (v, k, λ, μ) is a regular graph with v vertices of degree k such that every two adjacent vertices have exactly λ common neighbors and every two non-adjacent vertices have exactly μ common neighbors. A strongly regular decomposition is a decomposition of the edge set of the complete graph with vertex set V into strongly regular graphs with vertex set V. A strongly regular decomposition is commutative if the adjacency matrices of strongly regular graphs are commutative. The concept of strongly regular decomposition was introduced by van Dam [2] in order to study more general situation of amorphous association schemes.

In this paper, we show that for any positive integer m, there is a commutative strongly regular decomposition of the complete graph of $2^{2 m}\left(2^{m}+2\right)$ vertices, into 2^{m} strongly regular graphs with parameters $\left(2^{2 m}\left(2^{m}+2\right), 2^{2 m}+2^{m}, 2^{m}, 2^{m}\right)$ and $2^{m}+2$ cliques of size $2^{2 m}$. Note that $2^{m}+2$ cliques of size $2^{2 m}$ is a strongly regular graph with parameters $\left(2^{2 m}\left(2^{m}+2\right), 2^{2 m}-1,2^{2 m}-2,0\right)$. In fact, the constructed strongly regular graphs with parameters $\left(2^{2 m}\left(2^{m}+2\right), 2^{2 m}+2^{m}, 2^{m}, 2^{m}\right)$ are symmetric $\left(2^{2 m}\left(2^{m}+2\right), 2^{2 m}+2^{m}, 2^{m}\right)$-designs with symmetric incidence matrices with very large number of symmetries. Our construction method is due to Wallis [5] (see also [4, Theorem 5.23]) based on the generalized Hadamard matrices obtained from finite fields of characteristic two and symmetric Latin squares with constant diagonal of even order.

One might wonder if the decomposition yields a symmetric association scheme, but unfortunately this does not hold. We had to further decompose the edge sets of the strongly regular graphs in order to obtain a symmetric association scheme, and to determine the eigenmatrices of the symmetric association scheme explicitly. As a corollary, we obtain the eigenmatrix of the commutative strongly regular decomposition.

2. Preliminaries

Let n be a positive integer. Let V be a finite set of size v and $R_{i}(i \in\{0,1, \ldots, n\})$ be a non-empty subset of $V \times V$. The adjacency matrix A_{i} of the graph with vertex set V and edge set R_{i} is a $v \times v(0,1)$-matrix with rows and columns indexed by the elements of V such that $\left(A_{i}\right)_{x y}=1$ if $(x, y) \in R_{i}$ and $\left(A_{i}\right)_{x y}=0$ otherwise. The pair $\left(V,\left\{R_{i}\right\}_{i=0}^{n}\right)$ is said to be a commutative decomposition of the complete graph if the following hold:
(i) $A_{0}=I_{v}$, the identity matrix of order v.
(ii) $\sum_{i=0}^{n} A_{i}=J_{v}$, the all-ones matrix of order v.
(iii) A_{i} is symmetric for $i \in\{1, \ldots, n\}$.
(iv) For any $i, j, A_{i} A_{j}=A_{j} A_{i}$.

We also refer to the set of non-zero $v \times v(0,1)$-matrices satisfying (i)-(iv) as a commutative decomposition. Note that the corresponding graph of each A_{i} is regular, because A_{i} and $J_{v}=\sum_{i=0}^{n} A_{i}$ commute. Let k_{i} denote the valency of the corresponding graph of A_{i}.

https://daneshyari.com/en/article/5771569

Download Persian Version:
https://daneshyari.com/article/5771569

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: kharaghani@uleth.ca (H. Kharaghani), sasani@uleth.ca (S. Sasani), suda@auecc.aichi-edu.ac.jp (S. Suda).

