Contents lists available at ScienceDirect ## Finite Fields and Their Applications www.elsevier.com/locate/ffa # On normalized generating sets for GQC codes over \mathbb{Z}_2 Sunghan Bae^a, Pyung-Lyun Kang^b, Chengju Li^{c,*} - ^a Department of Mathematics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea - ^b Department of Mathematics, Chungnam National University, Daejeon, 34134, Republic of Korea - ^c Shanghai Key Laboratory of Trustworthy Computing, School of Computer Science and Software Engineering, East China Normal University, Shanghai, 200062, China #### ARTICLE INFO #### Article history: Received 23 February 2016 Received in revised form 7 August 2016 Accepted 24 November 2016 Available online 11 January 2017 Communicated by Chaoping Xing MSC: 94B05 94B15 11T71 13M99 Keywords: Binary codes Generalized quasi-cyclic codes Dual codes #### ABSTRACT Let r_i be positive integers and $R_i = \mathbb{Z}_2[x]/\langle x^{r_i} - 1 \rangle$ for $1 \leq i \leq \ell$. Denote $\mathcal{R} = R_1 \times R_2 \times \cdots \times R_\ell$. Generalized quasi-cyclic (GQC) code \mathcal{C} of length $(r_1, r_2, \ldots, r_\ell)$ over \mathbb{Z}_2 can be viewed as $\mathbb{Z}_2[x]$ -submodule of \mathcal{R} . In this paper, we investigate the algebraic structure of \mathcal{C} by presenting its normalized generating set. We also present a method to determine the normalized generating set of the dual code of \mathcal{C} , which is derived from the normalized generating set of \mathcal{C} . © 2016 Elsevier Inc. All rights reserved. [☆] The second author is supported by CNU research fund and the third author is supported by the NSFC-Zhejiang Joint Fund for the Integration of Industrialization and Informatization (No. U1509219) and the Fundamental Research Funds for the Central Universities (No. 56XZA15002). ^{*} Corresponding author. E-mail addresses: shbae@kaist.ac.kr (S. Bae), plkang@cnu.ac.kr (P.-L. Kang), lichengju1987@163.com (C. Li). #### 1. Introduction Cyclic codes can be efficiently encoded using shift registers and have rich algebraic structures for efficient decoding, which explain their significant role in both the theory of error-correcting codes and engineering. Classical cyclic codes of length n over a finite field \mathbb{F}_q , which can be viewed as ideals of $\mathbb{F}_q[x]/\langle x^n-1\rangle$, were extensively investigated [10,11]. Codes over finite rings have been studied since the early 1970's. Hammons et al. [9] showed that certain good nonlinear binary codes can be constructed from cyclic codes over \mathbb{Z}_4 via Gray map. Since then, a lot of progresses on the study of codes over finite rings have been made [1,2,4,6,7]. As a generation of cyclic code, generalized quasi-cyclic (GQC) code and quasi-cyclic code over finite fields or finite rings have been studied [3,5,8,12–15] and employed to construct low-density parity-check codes. Let \mathbb{Z}_2 be the ring of integers modulo 2, r_i positive integers, and $R_i = \mathbb{Z}_2[x]/\langle x^{r_i} - 1 \rangle$ for $1 \leq i \leq \ell$. Denote $\mathcal{R} = R_1 \times R_2 \times \cdots \times R_{\ell}$. A GQC code \mathcal{C} of length $(r_1, r_2, \ldots, r_{\ell})$ over \mathbb{Z}_2 can be viewed as a $\mathbb{Z}_2[x]$ -submodule of \mathcal{R} . - It is well-known that C is a binary cyclic code if $\ell = 1$. - When $\ell = 2$, \mathcal{C} is called a \mathbb{Z}_2 -double cyclic code. The algebraic structures of \mathcal{C} and its dual code were presented in [3]. - When $\ell = 3$, \mathcal{C} is called a \mathbb{Z}_2 -triple cyclic code. The minimal generating set of \mathcal{C} and the relations between \mathcal{C} and its dual code were determined in some special cases [13]. Recently, Matsui [12] presented a complete theory of generator polynomial matrix of GQC code \mathcal{C} and a relation formula of the generator polynomial matrices between \mathcal{C} and \mathcal{C}^{\perp} , where \mathcal{C}^{\perp} is the dual code of \mathcal{C} . We refer the reader to [12] for more information on GQC code. In this paper, for any positive integer ℓ , we investigate the algebraic structure of GQC code \mathcal{C} by presenting its normalized generating set. We also present a method to determine the relationship between a normalized generating set of \mathcal{C} and that of \mathcal{C}^{\perp} . It will be seen that our method is more concrete because a normalized generating set of \mathcal{C} is given. The rest of this paper is organized as follows. In Section 2, we investigate the algebraic structure of the GQC code \mathcal{C} over \mathbb{Z}_2 . In Section 3, we present a method to determine a normalized generating set of \mathcal{C}^{\perp} , which is derived from a normalized generating set of \mathcal{C} . In Section 4, we conclude this paper. #### 2. GQC codes over \mathbb{Z}_2 Suppose that r_i are positive integers for $1 \leq i \leq \ell$. Let \mathcal{C} be a binary linear code of length $n = r_1 + r_2 + \cdots + r_\ell$. We call \mathcal{C} a GQC code of length $(r_1, r_2, \dots, r_\ell)$ over \mathbb{Z}_2 if $$\mathbf{c} = (c_{1,0}, c_{1,1}, \dots, c_{1,r_1-1} | \dots | c_{\ell,0}, c_{\ell,1}, \dots, c_{\ell,r_{\ell}-1}) \in \mathcal{C}$$ ### Download English Version: # https://daneshyari.com/en/article/5771596 Download Persian Version: https://daneshyari.com/article/5771596 <u>Daneshyari.com</u>