

Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/)

Finite Fields and Their Applications

www.elsevier.com/locate/ffa

Enumerating permutation polynomials

FINITE FIELDS

Theodoulos Garefalakis ¹, Giorgos Kapetanakis [∗]*,*¹

Department of Mathematics and Applied Mathematics, University of Crete, 70013 Heraklion, Greece

A R T I C L E I N F O A B S T R A C T

Article history: Received 12 February 2016 Received in revised form 9 December 2016 Accepted 3 June 2017 Available online xxxx Communicated by Xiang-dong Hou

MSC: 11T06 11T23

Keywords: Finite fields Permutation polynomials

We consider the problem of enumerating polynomials over \mathbb{F}_q , that have certain coefficients prescribed to given values and permute certain substructures of \mathbb{F}_q . In particular, we are interested in the group of *N*-th roots of unity and in the submodules of \mathbb{F}_q . We employ the techniques of Konyagin and Pappalardi to obtain results that are similar to their results in Konyagin and Pappalardi (2006) [\[8\].](#page--1-0) As a consequence, we prove conditions that ensure the existence of low-degree permutation polynomials of the mentioned substructures of \mathbb{F}_q .

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let $q = p^t$, where p is a prime and t is a positive integer. A polynomial over the finite field \mathbb{F}_q is called a *permutation polynomial* if it induces a permutation on \mathbb{F}_q . The study of permutation polynomials goes back to the work of Hermite $[6]$, Dickson $[5]$, and subsequently Carlitz [\[3\]](#page--1-0) and others. Recently, interest in permutation polynomials has been renewed due to applications they have found in coding theory, cryptography and

^{*} Corresponding author.

E-mail addresses: tgaref@uoc.gr (T. Garefalakis), gnkapet@gmail.com (G. Kapetanakis).

Fax: $+30$ 2810 393881.

combinatorics. We refer to Chapter 7 of [\[10\]](#page--1-0) for background on permutation polynomials, as well as an extensive discussion on the history of the subject.

In a recent work, Coulter, Henderson and Matthews [\[4\]](#page--1-0) present a new construction of permutation polynomials. Their method requires a polynomial that permutes the group of *N*-th roots of unity, μ_N , where $N | q-1$, and an auxiliary function *T* which contracts \mathbb{F}_q to $\mu_N \cup \{0\}$ and has some additional linearity property. This idea was generalized by Akbary, Ghioca and Wang [\[2\].](#page--1-0)

In different line of work, Konyagin and Pappalardi [\[7,8\]](#page--1-0) count the permutation polynomials that have given coefficients equal to zero. Given a permutation $\sigma \in S(\mathbb{F}_q)$, there exists a unique polynomial in $f_{\sigma} \in \mathbb{F}_q[X]$ of degree at most $q-2$ such that $f_{\sigma}(c) = \sigma(c)$ for all $c \in \mathbb{F}_q$. For any $0 < k_1 < \cdots < k_d < q-1$, they define $N_q(k_1, \ldots, k_d)$ to be the number of permutations σ such that the corresponding polynomial f_{σ} has the coefficients of X^{k_i} , $1 \leq i \leq d$, equal to zero and prove the following main result.

Theorem 1.1 *[\(\[8\],](#page--1-0) Theorem 1).*

$$
\left|N_q(k_1,\ldots,k_d)-\frac{q!}{q^d}\right| \leq \left(1+\frac{1}{\sqrt{e}}\right)^q((q-k_1-1)q)^{q/2}.
$$

In particular, this implies that there exist such permutations, given that $q!/q^d$ $(1 + e^{-1/2})^q ((q - k_1 - 1)q)^{q/2}.$

Akbary, Ghioca and Wang [\[1\]](#page--1-0) sharpened this result by enumerating permutation polynomials of prescribed shape, that is, with a given set of non-zero monomials.

In the present work, we consider the problem of enumerating polynomials over \mathbb{F}_q , that have certain coefficients fixed to given values, and permute certain substructures of \mathbb{F}_q , namely the group of N -th roots of unity and submodules of \mathbb{F}_q and prove the following theorems.

Theorem 1.2. *If* $N! / q^d$ ≥ $[(q-1)(N-k_1)]^{N/2} (1+e^{-1/2})^N$, *then there exists a polynomial* of $\mathbb{F}_q[X]$ of degree at most $N-1$, that permutes μ_N , the N-th roots of unity, with the coefficients of X^{k_i} equal to $a_i \in \mathbb{F}_q$, for $i = 1, ..., d$ and $0 < k_1 < \cdots < k_d < N$, where $N \mid q-1$ *and* **q** *is the minimum divisor of q with* $N \mid q-1$ *.*

Theorem 1.3. Let \mathbb{F}_r be a proper subfield of \mathbb{F}_q *. Suppose* $\mathfrak{r}!/\mathfrak{q}^d \geq \mathfrak{q}^{\mathfrak{r}/2}(\mathfrak{r} - k_1 - 1)^{\mathfrak{r}/2}(1 +$ $e^{-1/2}$ ^r, then there exists a polynomial of $\mathbb{F}_q[X]$ that permutes F, an $\mathbb{F}_r[X]$ *-submodule* of \mathbb{F}_q , with its coefficients of X^{k_i} equal to $a_i \in \mathbb{F}_q$, for $i = 1, ..., d$ and $0 < k_1 < \cdots < k_d <$ N, where $\mathfrak{r} = r^n = |\mathcal{F}|$, $\mathfrak{q} = r^{\rho}$ and ρ is the order and n is the degree of the Order of F.

We employ the techniques of Konyagin and Pappalardi to obtain results that are similar to those in [\[8\].](#page--1-0) In particular, Theorems 1.2 and 1.3 can be viewed as the analogies of Theorem 1.1 for roots of unity and submodules respectively, while they also imply the existence of low-degree polynomials that permute these substructures of \mathbb{F}_q , see [Corol](#page--1-0)[laries 2.1 and](#page--1-0) 3.1.

Download English Version:

<https://daneshyari.com/en/article/5771613>

Download Persian Version:

<https://daneshyari.com/article/5771613>

[Daneshyari.com](https://daneshyari.com)