

Contents lists available at ScienceDirect

Finite Fields and Their Applications

www.elsevier.com/locate/ffa

G_2 and some exceptional Witt vector identities

Nicholas M. Katz

Princeton University, Mathematics, Fine Hall, NJ 08544-1000, USA

ARTICLE INFO

Article history: Received 4 December 2016 Received in revised form 27 April 2017 Accepted 15 June 2017 Available online xxxx Communicated by Stephen D. Cohen

ABSTRACT

We find some new one-parameter families of exponential sums in every odd characteristic whose geometric and arithmetic monodromy groups are G_2 .

@ 2017 Elsevier Inc. All rights reserved.

MSC: 11T24 14D05 14G15 20G41

Keywords: Monodromy Exceptional groups Exponential sums

0. Introduction

In earlier work [7, 9.1.1], we proved that certain very simple one-parameter families of exponential sums had the exceptional group G_2 as their (geometric and arithmetic) monodromy groups, in every finite characteristic $p \ge 17$. These sums were of the form

$$(1/g)\sum_{x\in k^{\times}}\chi_2(x)\psi(x^7+tx).$$

 $E\text{-}mail\ address:\ nmk@math.princeton.edu.$

 $[\]label{eq:http://dx.doi.org/10.1016/j.ffa.2017.06.008} 1071-5797/© 2017$ Elsevier Inc. All rights reserved.

Here k is a finite field, g is a fixed gauss sum, χ_2 is the quadratic character of k^{\times} , ψ is a nontrivial additive character of k, and $t \in k$ is the parameter. A question of Rudnick and Waxman led us to wonder if, in this construction, the polynomial x^7 inside the ψ could be replaced by other polynomials of degree seven and still yield G_2 . Computer experiments suggested that the answer was indeed yes, for polynomials of the form

$$ax^7/7 + 2abx^5/5 + ab^2x^3/3,$$

any $a \neq 0$, any b. That these polynomials do indeed produce G_2 in large characteristic (see Theorem 4.3) results from certain Witt vector identities. It remains an open question if these are the only polynomials which produce G_2 .

In the second half of the paper, we analyze the situation in low characteristic, especially in characteristics 3, 5, 7, where Witt vectors reappear in order to make sense of the question, and (again) to provide the answer.

1. The exceptional identities

Fix a prime p, and consider the p-Witt vectors of length 2 as a ring scheme over \mathbb{Z} . The addition law is given by

$$(x, a) + (y, b) := (x + y, a + b + (x^p + y^p - (x + y)^p)/p).$$

The multiplication law is given by

$$(x,a)(y,b) := (xy, x^pb + y^pa + pab).$$

For an odd prime p, we have

$$(x,0) + (y,0) + (-x - y,0) = (0, (x^p + y^p - (x + y)^p)/p).$$

Let us define, for odd p, the integer polynomial

$$F_p(x,y) := (x^p + y^p - (x+y)^p)/p \in \mathbb{Z}[x,y].$$

For p = 2, we have

$$(x,0) + (y,0) + (-x - y,0) = (0, x^{2} + xy + y^{2}),$$

and we define

$$F_2(x,y) := x^2 + xy + y^2 \in \mathbb{Z}[x,y].$$

Thus

$$F_3 = -xy(x+y).$$

Download English Version:

https://daneshyari.com/en/article/5771615

Download Persian Version:

https://daneshyari.com/article/5771615

Daneshyari.com