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We find some new one-parameter families of exponential sums 
in every odd characteristic whose geometric and arithmetic 
monodromy groups are G2.
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0. Introduction

In earlier work [7, 9.1.1], we proved that certain very simple one-parameter families 
of exponential sums had the exceptional group G2 as their (geometric and arithmetic) 
monodromy groups, in every finite characteristic p ≥ 17. These sums were of the form

(1/g)
∑

x∈k×

χ2(x)ψ(x7 + tx).
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Here k is a finite field, g is a fixed gauss sum, χ2 is the quadratic character of k×, ψ is 
a nontrivial additive character of k, and t ∈ k is the parameter. A question of Rudnick 
and Waxman led us to wonder if, in this construction, the polynomial x7 inside the ψ
could be replaced by other polynomials of degree seven and still yield G2. Computer 
experiments suggested that the answer was indeed yes, for polynomials of the form

ax7/7 + 2abx5/5 + ab2x3/3,

any a �= 0, any b. That these polynomials do indeed produce G2 in large characteristic 
(see Theorem 4.3) results from certain Witt vector identities. It remains an open question 
if these are the only polynomials which produce G2.

In the second half of the paper, we analyze the situation in low characteristic, espe-
cially in characteristics 3, 5, 7, where Witt vectors reappear in order to make sense of the 
question, and (again) to provide the answer.

1. The exceptional identities

Fix a prime p, and consider the p-Witt vectors of length 2 as a ring scheme over Z. 
The addition law is given by

(x, a) + (y, b) := (x + y, a + b + (xp + yp − (x + y)p)/p).

The multiplication law is given by

(x, a)(y, b) := (xy, xpb + ypa + pab).

For an odd prime p, we have

(x, 0) + (y, 0) + (−x− y, 0) = (0, (xp + yp − (x + y)p)/p).

Let us define, for odd p, the integer polynomial

Fp(x, y) := (xp + yp − (x + y)p)/p ∈ Z[x, y].

For p = 2, we have

(x, 0) + (y, 0) + (−x− y, 0) = (0, x2 + xy + y2),

and we define

F2(x, y) := x2 + xy + y2 ∈ Z[x, y].

Thus

F3 = −xy(x + y).
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