

Contents lists available at ScienceDirect

Finite Fields and Their Applications

www.elsevier.com/locate/ffa

On maximal cliques of polar graphs $\stackrel{\bigstar}{\Rightarrow}$

Antonio Cossidente $^{\rm a},$ Giuseppe Marino $^{\rm b},$ Francesco Pavese $^{\rm c,*}$

 ^a Dipartimento di Matematica Informatica ed Economia, Università della Basilicata, Contrada Macchia Romana, I-85100 Potenza, Italy
^b Dipartimento di Matematica e Fisica, Università degli Studi della Campania "Luigi Vanvitelli", Viale Lincoln, 5, I-81100 Caserta, Italy
^c Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Via Orabona, 4, I-70125 Bari, Italy

ARTICLE INFO

Article history: Received 2 September 2015 Received in revised form 15 June 2017 Accepted 23 June 2017 Available online xxxx Communicated by L. Storme

ABSTRACT

The maximal cliques of the graph NU(4, q^2) related to the Hermitian surface of PG(3, q^2) and of the graph NO[±](2n + 2, q), q even, $n \ge 1$, are classified.

© 2017 Elsevier Inc. All rights reserved.

MSC: 05E30 05C99

Keywords: Strongly regular graph Maximal clique Hermitian surface Hyperbolic quadric Elliptic quadric

E-mail addresses: antonio.cossidente@unibas.it (A. Cossidente), giuseppe.marino@unicampania.it (G. Marino), francesco.pavese@poliba.it (F. Pavese).

 $^{^{*}}$ The research was supported by Ministry for Education, University and Research of Italy MIUR (Project PRIN 2012 "Geometrie di Galois e strutture di incidenza") and by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA-INdAM).

^{*} Corresponding author.

1. Introduction

Let $Q^{\pm}(2n+1,q)$ be a non-degenerate quadric of PG(2n+1,q), $n \ge 1$. Let $NO^{\pm}(2n+2,q)$ be the graph whose vertices are the points of $PG(2n+1,q) \setminus Q^{\pm}(2n+1,q)$ and two vertices P_1, P_2 are adjacent if the line joining P_1 and P_2 contains exactly one point of $Q^{\pm}(2n+1,q)$ (i.e., it is a line tangent to $Q^{\pm}(2n+1,q)$). The graph $NO^{\pm}(2n+2,q)$ is a strongly regular graph if and only if q = 2 [1, Table 9.9, p. 145]. Let $\mathcal{H}(n,q^2)$ be a non-degenerate Hermitian variety of $PG(n,q^2)$, $n \ge 2$. Let $NU(n+1,q^2)$ be the graph whose vertices are the points of $PG(n,q^2) \setminus \mathcal{H}(n,q^2)$ and two vertices P_1, P_2 are adjacent if the line joining P_1 and P_2 contains exactly one point of $\mathcal{H}(n,q^2)$ (i.e., it is a line tangent to $\mathcal{H}(n,q^2)$). The graph $NU(n+1,q^2)$ is a strongly regular graph for any q [1, Table 9.9, p. 145].

The maximal cliques of the graphs $NU(3, q^2)$ were classified in [2, Corollary 3]. In particular the authors showed that there are exactly two types of cliques of size q^2 and q+2, respectively. In the first case, it corresponds to the points on a tangent line with the tangent point excluded. In the second case, it corresponds to q+1 points forming a Baer subline of a tangent line ℓ , and the other point not on ℓ .

In this paper we will classify the maximal cliques of the graph NU(4, q^2) related to the Hermitian surface of PG(3, q^2) and of the graph NO[±](2n + 2, q), q even, $n \ge 1$ (cf. Theorem 3.1). In particular we will prove the following classification theorem.

Theorem 1.1. Let C be a maximal clique of $NU(4, q^2)$, then either

1. $|\mathcal{C}| = q^2$, and \mathcal{C} consists of the points on a tangent line without the tangent point *itself;*

or C spans the whole space and one of the following cases occur:

- 2. $|\mathcal{C}| = q + 4$, q > 2, and \mathcal{C} consists of a Baer subline and a triangle;
- 3. $|\mathcal{C}| = 2q + 2$, $q \equiv 1 \pmod{3}$ and \mathcal{C} consists of two Baer sublines on two skew lines;
- 4. $|\mathcal{C}| = 2q + 3$, $q \not\equiv 1 \pmod{3}$ and \mathcal{C} consists of two Baer sublines on two skew lines and a further point not on the lines;
- 5. C is an arc of PG(3, q^2).

2. The maximal cliques of $NU(4, q^2)$

The graph NU(4, q^2) is a strongly regular graph with parameters $v = q^3(q^2+1)(q-1)$, $k = (q^2-1)(q^3+1)$, $\lambda = q^4 + q^2 - 2$ and $\mu = q(q^2-1)(q+1)$.

We first recall that an *O'Nan configuration* consists of six points in a projective plane, namely the four vertices of a non-degenerate quadrangle together with two of their three diagonal points. In [14] it has been proved that no O'Nan configuration lies on a Hermitian curve. By using the polarity of the Hermitian curve, we have the following remark.

Download English Version:

https://daneshyari.com/en/article/5771624

Download Persian Version:

https://daneshyari.com/article/5771624

Daneshyari.com