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1. Introduction

Let Q±(2n +1, q) be a non-degenerate quadric of PG(2n +1, q), n ≥ 1. Let NO±(2n +
2, q) be the graph whose vertices are the points of PG(2n + 1, q) \ Q±(2n + 1, q) and 
two vertices P1, P2 are adjacent if the line joining P1 and P2 contains exactly one point 
of Q±(2n + 1, q) (i.e., it is a line tangent to Q±(2n + 1, q)). The graph NO±(2n + 2, q)
is a strongly regular graph if and only if q = 2 [1, Table 9.9, p. 145]. Let H(n, q2) be a 
non-degenerate Hermitian variety of PG(n, q2), n ≥ 2. Let NU(n + 1, q2) be the graph 
whose vertices are the points of PG(n, q2) \H(n, q2) and two vertices P1, P2 are adjacent 
if the line joining P1 and P2 contains exactly one point of H(n, q2) (i.e., it is a line 
tangent to H(n, q2)). The graph NU(n + 1, q2) is a strongly regular graph for any q [1, 
Table 9.9, p. 145].

The maximal cliques of the graphs NU(3, q2) were classified in [2, Corollary 3]. In 
particular the authors showed that there are exactly two types of cliques of size q2 and 
q + 2, respectively. In the first case, it corresponds to the points on a tangent line with 
the tangent point excluded. In the second case, it corresponds to q + 1 points forming a 
Baer subline of a tangent line �, and the other point not on �.

In this paper we will classify the maximal cliques of the graph NU(4, q2) related to 
the Hermitian surface of PG(3, q2) and of the graph NO±(2n + 2, q), q even, n ≥ 1 (cf. 
Theorem 3.1). In particular we will prove the following classification theorem.

Theorem 1.1. Let C be a maximal clique of NU(4, q2), then either

1. |C| = q2, and C consists of the points on a tangent line without the tangent point 
itself;

or C spans the whole space and one of the following cases occur:

2. |C| = q + 4, q > 2, and C consists of a Baer subline and a triangle;
3. |C| = 2q + 2, q ≡ 1 (mod 3) and C consists of two Baer sublines on two skew lines;
4. |C| = 2q + 3, q �≡ 1 (mod 3) and C consists of two Baer sublines on two skew lines 

and a further point not on the lines;
5. C is an arc of PG(3, q2).

2. The maximal cliques of NU(4, q2)

The graph NU(4, q2) is a strongly regular graph with parameters v = q3(q2+1)(q−1), 
k = (q2 − 1)(q3 + 1), λ = q4 + q2 − 2 and μ = q(q2 − 1)(q + 1).

We first recall that an O’Nan configuration consists of six points in a projective plane, 
namely the four vertices of a non-degenerate quadrangle together with two of their three 
diagonal points. In [14] it has been proved that no O’Nan configuration lies on a Hermi-
tian curve. By using the polarity of the Hermitian curve, we have the following remark.
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