On maximal cliques of polar graphs ${ }^{\text {sh }}$

Antonio Cossidente ${ }^{\text {a }}$, Giuseppe Marino ${ }^{\text {b }}$, Francesco Pavese ${ }^{\text {c,* }}$
${ }^{\text {a }}$ Dipartimento di Matematica Informatica ed Economia, Università della
Basilicata, Contrada Macchia Romana, I-85100 Potenza, Italy
b Dipartimento di Matematica e Fisica, Università degli Studi della Campania
"Luigi Vanvitelli", Viale Lincoln, 5, I-81100 Caserta, Italy
${ }^{\text {c }}$ Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Via Orabona, 4, I-70125 Bari, Italy

A R T I C L E I N F O

Article history:

Received 2 September 2015
Received in revised form 15 June 2017
Accepted 23 June 2017
Available online xxxx
Communicated by L. Storme

MSC:

05E30
05C99

Keywords:
Strongly regular graph
Maximal clique
Hermitian surface
Hyperbolic quadric
Elliptic quadric

A B S T R A C T

The maximal cliques of the graph $\mathrm{NU}\left(4, q^{2}\right)$ related to the Hermitian surface of $\operatorname{PG}\left(3, q^{2}\right)$ and of the graph $\mathrm{NO}^{ \pm}(2 n+2, q), q$ even, $n \geq 1$, are classified.
© 2017 Elsevier Inc. All rights reserved.

[^0]http://dx.doi.org/10.1016/j.ffa.2017.06.014
1071-5797/© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let $\mathcal{Q}^{ \pm}(2 n+1, q)$ be a non-degenerate quadric of $\mathrm{PG}(2 n+1, q), n \geq 1$. Let $\mathrm{NO}^{ \pm}(2 n+$ $2, q)$ be the graph whose vertices are the points of $\mathrm{PG}(2 n+1, q) \backslash \mathcal{Q}^{ \pm}(2 n+1, q)$ and two vertices P_{1}, P_{2} are adjacent if the line joining P_{1} and P_{2} contains exactly one point of $\mathcal{Q}^{ \pm}(2 n+1, q)$ (i.e., it is a line tangent to $\mathcal{Q}^{ \pm}(2 n+1, q)$). The graph $\mathrm{NO}^{ \pm}(2 n+2, q)$ is a strongly regular graph if and only if $q=2$ [1, Table 9.9 , p. 145]. Let $\mathcal{H}\left(n, q^{2}\right)$ be a non-degenerate Hermitian variety of $\operatorname{PG}\left(n, q^{2}\right), n \geq 2$. Let $\mathrm{NU}\left(n+1, q^{2}\right)$ be the graph whose vertices are the points of $\mathrm{PG}\left(n, q^{2}\right) \backslash \mathcal{H}\left(n, q^{2}\right)$ and two vertices P_{1}, P_{2} are adjacent if the line joining P_{1} and P_{2} contains exactly one point of $\mathcal{H}\left(n, q^{2}\right)$ (i.e., it is a line tangent to $\left.\mathcal{H}\left(n, q^{2}\right)\right)$. The graph $\mathrm{NU}\left(n+1, q^{2}\right)$ is a strongly regular graph for any $q[1$, Table 9.9, p. 145].

The maximal cliques of the graphs $\mathrm{NU}\left(3, q^{2}\right)$ were classified in [2, Corollary 3]. In particular the authors showed that there are exactly two types of cliques of size q^{2} and $q+2$, respectively. In the first case, it corresponds to the points on a tangent line with the tangent point excluded. In the second case, it corresponds to $q+1$ points forming a Baer subline of a tangent line ℓ, and the other point not on ℓ.

In this paper we will classify the maximal cliques of the graph $\mathrm{NU}\left(4, q^{2}\right)$ related to the Hermitian surface of $\mathrm{PG}\left(3, q^{2}\right)$ and of the graph $\mathrm{NO}^{ \pm}(2 n+2, q), q$ even, $n \geq 1$ (cf. Theorem 3.1). In particular we will prove the following classification theorem.

Theorem 1.1. Let \mathcal{C} be a maximal clique of $\mathrm{NU}\left(4, q^{2}\right)$, then either

1. $|\mathcal{C}|=q^{2}$, and \mathcal{C} consists of the points on a tangent line without the tangent point itself;
or \mathcal{C} spans the whole space and one of the following cases occur:
2. $|\mathcal{C}|=q+4, q>2$, and \mathcal{C} consists of a Baer subline and a triangle;
3. $|\mathcal{C}|=2 q+2, q \equiv 1(\bmod 3)$ and \mathcal{C} consists of two Baer sublines on two skew lines;
4. $|\mathcal{C}|=2 q+3, q \not \equiv 1(\bmod 3)$ and \mathcal{C} consists of two Baer sublines on two skew lines and a further point not on the lines;
5. \mathcal{C} is an arc of $\mathrm{PG}\left(3, q^{2}\right)$.

2. The maximal cliques of $\mathrm{NU}\left(4, q^{2}\right)$

The graph $\mathrm{NU}\left(4, q^{2}\right)$ is a strongly regular graph with parameters $v=q^{3}\left(q^{2}+1\right)(q-1)$, $k=\left(q^{2}-1\right)\left(q^{3}+1\right), \lambda=q^{4}+q^{2}-2$ and $\mu=q\left(q^{2}-1\right)(q+1)$.

We first recall that an O^{\prime} Nan configuration consists of six points in a projective plane, namely the four vertices of a non-degenerate quadrangle together with two of their three diagonal points. In [14] it has been proved that no O'Nan configuration lies on a Hermitian curve. By using the polarity of the Hermitian curve, we have the following remark.

https://daneshyari.com/en/article/5771624

Download Persian Version:
https://daneshyari.com/article/5771624

Daneshyari.com

[^0]: th The research was supported by Ministry for Education, University and Research of Italy MIUR (Project PRIN 2012 "Geometrie di Galois e strutture di incidenza") and by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA-INdAM).

 * Corresponding author.

 E-mail addresses: antonio.cossidente@unibas.it (A. Cossidente), giuseppe.marino@unicampania.it
 (G. Marino), francesco.pavese@poliba.it (F. Pavese).

