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Many important graphs are bipartite and cubic (i.e. bipartite 
and trivalent, or “bicubic”). We explain concisely how the 
Hamilton cycles of this type of graph are characterized by a 
single determinantal condition over GF(2). Thus algebra may 
be used to derive results such as those of Bosák, Kotzig, and 
Tutte that were originally proved differently.
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1. Introduction

Most commonly, combinatorial methods are used to prove results in graph theory; see 
e.g. [5]. However, it is also possible to use geometrical/matroid theoretic methods as in 
pioneering work by Tutte; see [1]. Here we look at a different method using an algebraic 
equation derived from a determinant.

In this note the graphs G are all simple, undirected, cubic and bipartite, with vertex set 
V and edge set E. Thus |V | = v = 2r with bipartition V = A ∪B, where A = {v1, . . . , vr}, 
B = {w1, . . . , wr}. The e = 3r edges [vi, wj ] of E go between vi ∈ A and wj ∈ B; see [3]. 
Small such graphs are K3,3, the complete bicubic graph, often called the utility graph; 
and the cubical graph consisting of the 8 vertices and 12 edges on a cube.

A “cycle” in a cubic graph is a collection of edges with an even number of (i.e. 0 or 
2 here) edges through each vertex. Each cycle is the union of connected parts, which 
are called “circuits” (when non-empty). This terminology is from matroid theory, where 
edges of a circuit are the same as a minimal dependent set of points in the “circuit-
matroid” of the graph. It is clear that the sum (mod 2), or taking symmetric differences, 
of any set of cycles is also a cycle. So there is a binary “cycle-code” based on the edges of 
the graph. The vertices of a cycle are those on two edges of it. So, for cubic graphs, the 
decomposition of a cycle into circuits is “vertex-disjoint”, since a pair of circuits with a 
common vertex would have a common edge, 2 + 2 being greater than 3. For a general 
graph G this cycle code has parameters [e, e −v+1]2 (length e, and dimension e −v+1). 
To see this, each vertex gives a binary linear condition, but the sum of the v linear con-
ditions is zero. So in the case of cubic graphs which have v vertices and e = 3v/2 edges, 
the parameters are [e, v/2 + 1]2. We consider only bipartite cubic graphs in this paper, 
and so v = 2r and e = 3r, while the binary cycle code has parameters [e, r + 1]2. In this 
case the circuits (and also the cycles) all have even size, and the cycle code is an “even” 
code (every word has even weight).

Any finite geometrical configuration (or linear space) of m points and n lines has a 
bipartite (Levi) graph with m + n vertices, each edge of the graph corresponding to an 
incidence between a point and a line. Conversely, in the case we are considering, a bicubic 
graph G has girth at least 6, having no circuits of size 4 or smaller, if and only if it is 
the Levi graph of a linear space of r points and r lines, with 3 lines through each point, 
and 3 points on each line. This is by definition an r3-configuration in geometry.

Examples include the Heawood graph on 7 vertices, corresponding to the projective 
plane of order 2 or the unique 73; the Möbius–Kantor graph on 16 vertices, corresponding 
to the unique 83; the Pappus graph on 18 vertices, corresponding to Pappus configura-
tion, one of the three possible 93; the Desargues graph on 10 vertices, corresponding 
to Desargues configuration, the best known of the ten possible 103; the girth 8 Tutte–
Coxeter graph on 30 vertices, corresponding to the generalized quadrangle W2 of 15 
points and lines fixed by a symplectic polarity in 3-d space PG(3, 2) over GF(2). Now 
we consider the general bicubic graph G.
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