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Several recent papers have considered the Ramsey-theoretic 
problem of how large a subset of integers can be without con-
taining any 3-term geometric progressions. This problem has 
also recently been generalized to number fields, determining 
bounds on the greatest possible density of ideals avoiding ge-
ometric progressions. We study the analogous problem over 
Fq[x], first constructing a set greedily which avoids these pro-
gressions and calculating its density, and then considering 
bounds on the upper density of subsets of Fq [x] which avoid 
3-term geometric progressions. This new setting gives us a pa-
rameter q to vary and study how our bounds converge to 1 
as it changes, and positive characteristic introduces some ex-
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Geometric progressions
Upper density

tra combinatorial structure that increases the tractability of 
common questions in this area.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

In a 1961 paper Rankin [7] introduced the idea of considering how large a set of integers 
can be without containing terms which are in geometric progression. He constructed a 
subset of the integers which includes a majority of the integers while avoiding 3-term 
geometric progressions. Brown and Gordon [3] noted that the set Rankin considered was 
the set obtained by greedily including integers subject to the condition that such integers 
do not create a progression involving integers already included in the set.

Other authors, including Riddell [8], Biegelböck, Bergelson, Hindman and Strauss [1], 
Nathanson and O’Bryant [5], and McNew [4], have refined bounds for the upper density 
of a set which avoids geometric progressions. Best, Huan, McNew, Miller, Powell, Tor 
and Weinstein [2] generalized the problem to quadratic number fields. Using many of the 
techniques from these other works, they obtained similar results for the density of the 
ideals in the ring of integers which similarly avoid geometric progressions.

The purpose of [2] was to see how the results differed when considering subsets of 
number fields rather than the integers. Here we investigate what happens over function 
fields of positive characteristic. In particular, using combinatorial tools as well as the 
methods of Rankin, McNew, and Best et al., we consider the size of the largest subset of 
the polynomial ring Fq[x] which avoids geometric progressions whose common ratio is a 
non-unit polynomial in this ring.

Remark 1.1. It is worth remarking on the choice of problem. In the integer case it is 
interesting to study sets which avoid 3-term geometric progressions with integral ratio 
as these sets have a very different flavor from those sets (called primitive sets) which avoid 
2-term progressions with integral ratio. The situation is richer over Fq[x], for example we 
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