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Motivated by the works on the girth of Tanner (3, 5) and (3, 7)
quasi-cyclic (QC) low-density parity-check (LDPC) codes 
done by S. Kim et al. and M. Gholami et al., respectively, 
we analyze the cycles of Tanner (3, 11) QC LDPC codes 
and present the sufficient and necessary conditions for the 
existence of cycles of lengths 4, 6, 8, and 10 in Tanner (3, 11)
QC LDPC codes. By checking these conditions, the girth 
values of Tanner (3, 11) QC LDPC codes are derived.
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1. Introduction

LDPC codes were invented by Gallager in 1960s [5] and were redescribed by Tanner 
in 1981 [17]. In 1990s, it was discovered that LDPC codes could achieve performance 
extremely close to Shannon capacity [12]. Since then a great deal of research effort has 
been made on construction, encoding, decoding, and performance analysis of LDPC codes 
[3,7,14,15,18,20]. Especially, the work on construction of LDPC codes is significant. Based 
on the construction methods, LDPC codes could be classified into two major categories: 
(1) random-like codes constructed by computer search [8]; and (2) structured codes 
based on mathematical tools [16], such as finite field [11], combinational designs [10], 
and graph theory [19]. In the hardware implementation aspect, structured LDPC codes, 
especially quasi-cyclic (QC) LDPC codes [1,4], can be encoded in linear time using shift 
registers. The corresponding decoder requires much smaller memory space to store the 
parity-check matrix and less computations than that of the random-like codes. Notice 
that some good structured LDPC codes can also be contained in generalized quasi-cyclic 
(GQC) codes [13]. Furthermore, for short to medium lengths, QC LDPC codes can 
perform better than the random-like ones [4]. Therefore, many QC LDPC codes have 
found applications in data storage and communication systems. Note that in data storage 
and optical communication applications, much higher coding rate is required, and large 
coding gain and very low probability of block error are also necessary [2]. It has been 
demonstrated that structured high-rate LDPC codes with larger girth can achieve good 
error-floor performance. Tanner (3, 11) QC LDPC codes are a class of such LDPC codes, 
whose rate is about 0.33 and 0.16 higher than that of Tanner (3, 5) QC LDPC [9] and 
Tanner (3, 7) QC LDPC [6] codes, respectively.

A QC LDPC code is defined by the null space of its parity-check matrix H which 
is a sparse array of circulant matrices. If each column weight and row weight of H is a 
constant, denoted by γ and ρ respectively, the null space of H gives a (γ, ρ)-regular QC 
LDPC code. In [4], Fossorier proposed a class of QC LDPC codes whose parity-check 
matrices are composed of γ rows of ρ circulant permutation matrices (CPMs). He ana-
lyzed the cycles of this class of (γ, ρ)-regular QC LDPC codes and gave the necessary 
conditions for the existence of cycles of lengths 4, 6, 8, and 10. Therefore, he presented 
a sufficient and necessary condition for this class of QC LDPC codes to have a girth at 
least 2(i + 1), i ∈ N∗. In [4], it is also proved that the girths of this class of QC LDPC 
codes are less than or equal to twelve. Based on this result, the girths of a class of QC 
LDPC codes proposed by Tanner et al. [17], called Tanner QC LDPC codes in this paper, 
are at most twelve. S. Kim, et al. showed that the girth of Tanner (3, 5) QC LDPC codes 
of length 5p, where p is a prime of the form 15m + 1, is 8 if p = 31, the girth is 10 if 
p = 61, 151, the girth is 12 in the other cases [9]. Subsequently, M. Gholami et al. derived 
the girth values of Tanner (3, 7) QC LDPC codes of length 7p with p being a prime of 
the form 21m +1. Namely, the girth of Tanner (3, 7) QC LDPC codes is 8 if p = 43, 127, 
the girth is 10 if p = 211, 337, 379, 421, 463, 547, 631, 757, 1429, 2437, 3109, and the girth 
is 12 in the remaining cases [6]. Actually, they analyzed the cycles of Tanner (3, 5) QC 



Download English Version:

https://daneshyari.com/en/article/5771650

Download Persian Version:

https://daneshyari.com/article/5771650

Daneshyari.com

https://daneshyari.com/en/article/5771650
https://daneshyari.com/article/5771650
https://daneshyari.com

