Bent and bent 4 spectra of Boolean functions over finite fields

Nurdagül Anbar ${ }^{\text {a,c,* }}$, Wilfried Meidl ${ }^{\text {b,c }}$
${ }^{\text {a }}$ Technical University of Denmark, Matematiktorvet, Building 303B, DK-2800, Lyngby, Denmark
b Johann Radon Institute for Computational and Applied Mathematics, Austrian
Academy of Sciences, Altenbergerstrasse 69, 4040-Linz, Austria
c Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany

A R T I C L E I N F O

Article history:

Received 17 November 2016
Received in revised form 11 March
2017
Accepted 23 March 2017
Available online xxxx
Communicated by Pascale Charpin

MSC:

06E30
11T06
05B10
Keywords:
Bent function
Negabent function
Bent $_{4}$
Boolean function
Walsh transform
Quadratic functions

A B S T R A C T

For $c \in \mathbb{F}_{2^{n}}$, a c-bent ${ }_{4}$ function f from the finite field $\mathbb{F}_{2^{n}}$ to \mathbb{F}_{2} is a function with a flat spectrum with respect to the unitary transform \mathcal{V}_{f}^{c}, which is designed to describe the component functions of modified planar functions. For $c=0$ the transform \mathcal{V}_{f}^{c} reduces to the conventional Walsh transform, and hence a 0 -bent 4 function is bent. In this article we generalize the concept of partially bent functions to the transforms \mathcal{V}_{f}^{c}. We show that every quadratic function is partially bent, and hence it is plateaued with respect to any of the transforms \mathcal{V}_{f}^{c}. In detail we analyse two quadratic monomials. The first has values as small as possible in its spectra with respect to all transforms \mathcal{V}_{f}^{c}, and the second has a flat spectrum for a large number of c. Moreover, we show that every quadratic function is c-bent ${ }_{4}$ for at least three distinct c. In the last part we analyse a cubic monomial. We show that it is c-bent 4_{4} only for $c=1$, the function is then called negabent, which shows that non-quadratic functions exhibit a different behaviour.
© 2017 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

Let f be a function from the finite field $\mathbb{F}_{2^{n}}$ to its prime field \mathbb{F}_{2}. For an element $c \in \mathbb{F}_{2^{n}}$, in [1] the unitary transform \mathcal{V}_{f}^{c} has been defined as the complex valued function

$$
\mathcal{V}_{f}^{c}(u)=\sum_{x \in \mathbb{F}_{2^{n}}}(-1)^{f(x)+\sigma(c, x)} i^{\operatorname{Tr}_{\mathrm{n}}(c x)}(-1)^{\operatorname{Tr}_{\mathrm{n}}(u x)}
$$

where $i=\sqrt{-1}$, the function $\operatorname{Tr}_{\mathrm{n}}(z)$ denotes the absolute trace of $z \in \mathbb{F}_{2^{n}}$ and $\sigma(c, x)$ is the Boolean function defined by

$$
\sigma(c, x)=\sum_{0 \leq i<j \leq n-1}(c x)^{2^{i}}(c x)^{2^{j}}
$$

For $c=0$, the transform \mathcal{V}_{f}^{c} reduces to the conventional Walsh-Hadamard transform

$$
\mathcal{V}_{f}^{0}(u)=\mathcal{W}_{f}(u)=\sum_{x \in \mathbb{F}_{2^{n}}}(-1)^{f(x)+\operatorname{Tr}_{\mathrm{n}}(u x)}
$$

If for some $c \in \mathbb{F}_{2^{n}}$ we have $\left|\mathcal{V}_{f}^{c}(u)\right|=2^{n / 2}$ for all $u \in \mathbb{F}_{2^{n}}$, then we call f a c-bent 4_{4} function. If $c=0$, then f is a conventional bent function, and a function that satisfies $\left|\mathcal{V}_{f}^{c}(u)\right|=2^{n / 2}$ for $c=1$ we call negabent. Alternatively, f is c-bent ${ }_{4}$ if and only if

$$
\begin{equation*}
f(x+a)+f(x)+\operatorname{Tr}_{\mathrm{n}}\left(c^{2} a x\right) \tag{1}
\end{equation*}
$$

is balanced for all nonzero $a \in \mathbb{F}_{2^{n}}$, see [1]. For $c=0$ we get the alternative definition of bent functions via the derivative, for $c=1$, Equation (1) has been used in [8] to define negabent functions from $\mathbb{F}_{2^{n}}$ to \mathbb{F}_{2}. Recall that a function $f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2}$ is called plateaued (or also s-plateaued) if $\left|\mathcal{W}_{f}(u)\right| \in\left\{0,2^{(n+s) / 2}\right\}$ for some (fixed) integer s (depending only on f). When n is odd and $s=1$, or n is even and $s=2$, the function f is also called semi-bent. Note that for $c \neq 0$ the value \mathcal{V}_{f}^{c} does not have to be integer-valued. In accordance with the above notations, we call f an s-plateaued function with respect to the transform \mathcal{V}_{f}^{c} if $\left|\mathcal{V}_{f}^{c}(u)\right| \in\left\{0,2^{(n+s) / 2}\right\}$ for some (fixed) integer s (only depending on f).

The terms bent ${ }_{4}$ and negabent have been used before for Boolean functions in multivariate form with similar properties, see $[4,6,7,9,11,12]$. However the multivariate bent ${ }_{4}$ functions are not obtained by representing univariate bent ${ }_{4}$ functions in multivariate form (by fixing a basis). For instance, every univariate affine function is c-bent ${ }_{4}$ for every nonzero c, whereas a multivariate affine function is not c-bent ${ }_{4}$ for any c different from $(1,1, \ldots, 1)$, see [1] for the details. Hence univariate bent ${ }_{4}$ functions have to be dealt separately.

The motivation for defining bent ${ }_{4}$ functions over finite fields with the transforms \mathcal{V}_{f}^{c} respectively with Equation (1) comes from modified planar functions, which were recently introduced in [14] as functions F on $\mathbb{F}_{2^{n}}$ for which

https://daneshyari.com/en/article/5771655

Download Persian Version:

https://daneshyari.com/article/5771655

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: nurdagulanbar2@gmail.com (N. Anbar), meidlwilfried@gmail.com (W. Meidl).

