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In this paper we study some sophisticated supercongruences 
involving dual sequences. For n = 0, 1, 2, . . . define
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For any odd prime p and p-adic integer x, we determine ∑p−1
k=0(±1)kdk(x)2 and 

∑p−1
k=0(2k + 1)dk(x)2 modulo p2; for 

example, we establish the new p-adic congruence

p−1∑
k=0

(−1)kdk(x)2 ≡ (−1)〈x〉p (mod p2),

where 〈x〉p denotes the least nonnegative integer r with x ≡
r (mod p). For any prime p > 3 and p-adic integer x, we 
determine 

∑p−1
k=0 sk(x)2 modulo p2 (or p3 if x ∈ {0, . . . , p −1}), 

and show that

p−1∑
k=0

(2k + 1)sk(x)2 ≡ 0 (mod p2).
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We also pose several related conjectures.
© 2017 Elsevier Inc. All rights reserved.

1. Introduction

For a sequence of numbers a0, a1, a2, . . . , its dual sequence a∗0, a
∗
1, a

∗
2, . . . is given by

a∗n =
n∑

k=0

(
n

k

)
(−1)kak (n = 0, 1, 2, . . .). (1.1)

It is well-known that (a∗n)∗ = an for all n = 0, 1, 2, . . . . One may consult [15] for some 
combinatorial identities involving dual sequences. The author [21, Theorem 2.2] showed 
that if p is an odd prime, a0, a1, . . . , ap−1 are p-adic integers and m is an integer with 
p � m(m − 4) then
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(mod p),

where ( ·
p ) denotes the Legendre symbol.

Let p be any odd prime. There are various interesting p-adic congruences related to 
finite fields, see, e.g., [1,3,7,22,24]. The author and R. Tauraso [23, (1.9)] showed that
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)
(mod p2),

where (−) is the Legendre symbol. In [17] the author determined 
∑p−1

k=0
(2k
k

)
/mk modulo 

p2 for any integer m �≡ 0 (mod p), and moreover he proved that

p−1∑
k=0

(2k
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)
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(
−1
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)
− p2Ep−3 (mod p3),

where E0, E1, E2, . . . are the Euler numbers given by

E0 = 1 and
n∑

k=0
2|k

(
n

k

)
En−k = 0 for n ∈ Z+ = {1, 2, 3, . . .}.

If an =
(2n
n

)
=

(−1/2
n

)
(−4)n for n ∈ N = {0, 1, 2, . . .}, then we have a∗n = (−1)nTn for all 

n ∈ N by [4, (3.86)], where the central trinomial coefficient Tn is the constant term of 
(1 + x + x−1)n. In [20] the author showed that
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