

Contents lists available at ScienceDirect

Finite Fields and Their Applications

www.elsevier.com/locate/ffa

Short Communication

A note on character sums in finite fields

Abhishek Bhowmick ^a, Thái Hoàng Lê $^{\rm b,\ast},$ Yu-Ru Liu $^{\rm c}$

 ^a Department of Computer Science, The University of Texas at Austin, TX 78712, United States
 ^b Department of Mathematics, The University of Mississippi, University, MS 38677, United States
 ^c Department of Pure Mathematics, Faculty of Mathematics, University of Waterloo, Waterloo, ON, N2L 3G1, Canada

ARTICLE INFO

Article history: Received 7 November 2016 Received in revised form 10 March 2017 Accepted 17 March 2017 Available online xxxx Communicated by Stephen D. Cohen ABSTRACT

We prove a character sum estimate in $\mathbb{F}_q[t]$ and answer a question of Shparlinski.

@ 2017 Elsevier Inc. All rights reserved.

MSC: 11L40 11T55

Keywords: Character sums Finite fields L-functions Function fields

1. Introduction

Shparlinski [5] asks the following.

 $\label{eq:http://dx.doi.org/10.1016/j.ffa.2017.03.010} 1071-5797/© 2017$ Elsevier Inc. All rights reserved.

^{*} Corresponding author.

E-mail addresses: bhowmick@cs.utexas.edu (A. Bhowmick), leth@olemiss.edu (T.H. Lê), yrliu@math.uwaterloo.ca (Y.-R. Liu).

Problem 1. [5, Problem 14] Let $m \in \mathbb{Z}$ and χ be a non-principal character modulo m. Under the Generalized Riemann Hypothesis, obtain an estimate of the form

$$\sum_{k=1}^N \chi(k) \ll N^{1/2} m^{o(1)}$$

for any N, with an explicit expression for $m^{o(1)}$.

Though it has never been explicitly written down, such a bound is presumably well-known among analytic number theorists due to its connection with upper bounds for L-functions. Indeed, let $L(s, \chi)$ be the Dirichlet L-function associated with χ and $s = \sigma + it$. First we assume that χ is primitive. Then conditionally under GRH, we have the bound [3, Exercise 8, Section 13.2]

$$L(s,\chi) \ll \exp\left(C_1 \frac{\log m|t|}{\log \log m|t|}\right)$$
 (1)

for some absolute constant $C_1 > 0$ and uniformly for $1/2 \le \sigma \le 3/2$ and $|t| \ge 2$. Using the bound (1) and a standard contour integral one can show that

$$\sum_{k=1}^{N} \chi(k) \ll N^{1/2} \exp\left(C_2 \frac{\log m}{\log \log m}\right)$$
(2)

for some absolute constant $C_2 > 0$, when χ is primitive. If χ is induced by a character χ_1 modulo r with r|m then

$$\sum_{k=1}^{N} \chi(k) = \sum_{\substack{k=1\\(k,r)=1}}^{N} \chi_1(k) = \sum_{d \mid \frac{m}{r}} \mu(d) \chi_1(d) \sum_{k \le N/d} \chi_1(k).$$

Bounding this trivially, together with the fact that the number of prime factors of n is $O\left(\frac{\log n}{\log \log n}\right)$, it follows that we have a bound of type (2) as well when χ is not primitive.

The purpose of this note, however, is to obtain a bound similar to (2) in the polynomial ring $\mathbb{F}_q[t]$. Let $Q \in \mathbb{F}_q[t]$ be a polynomial of degree *n*. A (Dirichlet) character χ modulo Q is a character on the multiplicative group $(\mathbb{F}_q[t]/(Q))^{\times}$, which can be extended to a function on all of $\mathbb{F}_q[t]$ by periodicity and by setting $\chi(f) = 0$ for all $(f, Q) \neq 1$. If Q is irreducible then χ is a character on the field \mathbb{F}_{q^n} .

Shparlinski (private communication) also asks an $\mathbb{F}_q[t]$ -analog of Problem 1:

Problem 2. Let $Q \in \mathbb{F}_q[t]$, deg Q = n > 0 and χ be a non-principal character modulo Q. Let A_d be the set of all monic polynomials of degree exactly d in $\mathbb{F}_q[t]$. Obtain an estimate of the form Download English Version:

https://daneshyari.com/en/article/5771659

Download Persian Version:

https://daneshyari.com/article/5771659

Daneshyari.com