Journal of Algebra 488 (2017) 290-314

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Finitely supported *-simple complete ideals and multiplicities in a regular local ring

ALGEBRA

Mee-Kyoung Kim

Department of Mathematics, Sungkyunkwan University, Suwon 16419, Republic of Korea

ARTICLE INFO

Article history: Received 6 October 2015 Available online 27 June 2017 Communicated by Bernd Ulrich

MSC:

primary 13A30, 13C05 secondary 13E05, 13H15

Keywords: Rees valuation Finitely supported ideal Special *-simple complete ideal Base points Point basis Transform of an ideal Local quadratic transform

АВЅТ КАСТ

Let (R, \mathfrak{m}) and (S, \mathfrak{n}) be regular local rings of dim $(S) = \dim(R) \geq 2$ such that S birationally dominates R, and let \mathcal{V} be the order valuation ring of S with corresponding valuation $\nu := \operatorname{ord}_S$. Assume that $I^S \neq S$ and $\nu \in \operatorname{Rees}_S I^S$. Let $u := \alpha t$ with $IS = \alpha I^S$, where $\alpha \in S$. Then $\mathcal{V} = \mathcal{W} \cap \mathcal{Q}(R)$ with $\mathcal{W} = (\overline{R[It]})_Q = (\overline{S[I^Su]})_{Q'}$, where $Q \in \operatorname{Min}(\mathfrak{m}\overline{R[It]})$ and $Q' \in \operatorname{Min}(\mathfrak{n}\overline{S[I^Su]})$. Let P, P' be the center of \mathcal{W} on R[It] and $S[I^su]$, respectively. We prove that if $[\frac{S}{\mathfrak{n}} : \frac{R}{\mathfrak{m}}] = 1$, then $\frac{R[It]}{P} = \frac{S[I^su]}{P'}$. Let I be a finitely supported complete m-primary ideal of a regular local ring (R, \mathfrak{m}) of dimension $d \geq 2$. Let T be a terminal base point of I and V be the \mathfrak{m}_T -adic order valuation of T with corresponding valuation $v := \operatorname{ord}_T$. Let $P \in \operatorname{Min}(\mathfrak{m}R[It])$ such that $P = Q \cap R[It]$ with $V = (\overline{R[It]})_Q \cap Q(R)$, where $Q \in \operatorname{Min}(\mathfrak{m}R[It])$. We prove that the quotient ring $\frac{R[It]}{P}$ is d-dimensional normal Cohen–Macaulay standard graded domain over k with the multiplicity n^{d-1} . In particular, $\frac{R[It]}{P}$ is regular if and only if n = 1. We prove that $k := \frac{R}{\mathfrak{m}}$ is relatively algebraically closed in $k_v := \frac{V}{\mathfrak{m}_V}$. Also we determine the multiplicity of $\frac{R[It]}{P}$, and

E-mail address: mkkim@skku.edu.

 $\label{eq:http://dx.doi.org/10.1016/j.jalgebra.2017.06.012 \\ 0021\mathcal{eq:http://dx.doi.org/10.1016/j.jalgebra.2017.06.012 \\ 0021\mathcal{eq:http://dx.doi.0016/j.jalgebra.2017.06.012 \\ 0021\mathcal{eq:http://dx.doi.0016/j.jalgebra.2017.06.012$

we prove that if $I^T = \mathfrak{m}_T$, then $\frac{R[It]}{P}$ is regular if and only if $[\frac{T}{\mathfrak{m}_T} : \frac{R}{\mathfrak{m}}] = 1.$

@ 2017 Elsevier Inc. All rights reserved.

1. Introduction

All rings we consider are assumed to be commutative with an identity element. We use the concept of complete ideals as defined and discussed in Swanson-Huneke [20, Chapters 5, 6, 14]. We also use a number of concepts considered in Lipman's paper [16]. Let (R, \mathfrak{m}) be a regular local ring of dimension $d \geq 2$. Lipman considers the structure of a certain class of complete ideals of R, the finitely supported complete ideals, in [16]. He proves a factorization theorem for the finitely supported complete ideals that extends the factorization theory of complete ideals in a two-dimensional regular local ring as developed by Zariski [22, Appendix 5]. The product of two complete ideals in a two-dimensional regular local ring is again complete. This no longer holds in higher dimension, [3] or [13]. To consider the higher dimensional case, one defines for ideals I and J the *-product, I * J to be the completion of IJ. A complete ideal I in a commutative ring R is said to be *-simple if $I \neq R$ and if I = J * L with ideals J and L in R implies that either J = R or L = R.

Another concept used by Zariski in [22] is that of the transform of an ideal; the complete transform of an ideal is used in [16] and [5].

Definition 1.1. Let $R \subseteq T$ be unique factorization domains (UFDs) with R and T having the same field of fractions, and let I be an ideal of R not contained in any proper principal ideal.

- (1) The **transform** of I in T is the ideal $I^T = a^{-1}IT$, where aT is the smallest principal ideal in T that contains IT.
- (2) The complete transform of I in T is the completion $\overline{I^T}$ of I^T .

A proper ideal I in a commutative ring R is **simple** if $I \neq L \cdot H$, for any proper ideals L and H. An element $\alpha \in R$ is said to be **integral over** I if α satisfies an equation of the form

$$\alpha^n + r_1 \alpha^{n-1} + \dots + r_n = 0$$
, where $r_i \in I^i$.

The set of all elements in R that are integral over an ideal I forms an ideal, denoted by \overline{I} and called the **integral closure** of I. An ideal I is said to be **complete** (or, **integrally closed**) if $I = \overline{I}$.

Download English Version:

https://daneshyari.com/en/article/5771704

Download Persian Version:

https://daneshyari.com/article/5771704

Daneshyari.com