

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

On the Stanley depth of powers of edge ideals

S.A. Seyed Fakhari

School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran

ARTICLE INFO

Article history: Received 28 July 2016 Available online 27 July 2017 Communicated by Michel Broué

MSC: primary 13C15, 05E99 secondary 13C13

Keywords: Edge ideal Stanley depth Stanley's inequality

ABSTRACT

Let \mathbb{K} be a field and $S = \mathbb{K}[x_1, \ldots, x_n]$ be the polynomial ring in n variables over \mathbb{K} . Let G be a graph with nvertices. Assume that I = I(G) is the edge ideal of Gand p is the number of its bipartite connected components. We prove that for every positive integer k, the inequalities sdepth $(I^k/I^{k+1}) \ge p$ and sdepth $(S/I^k) \ge p$ hold. As a consequence, we conclude that S/I^k satisfies Stanley's inequality for every integer $k \ge n - 1$. Also, it follows that I^k/I^{k+1} satisfies Stanley's inequality for every integer $k \gg 0$. Furthermore, we prove that if (i) G is a non-bipartite graph, or (ii) at least one of the connected components of G is a tree with at least one edge, then I^k satisfies Stanley's inequality for every integer $k \ge n - 1$. Moreover, we verify a conjecture of the author in special cases.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathbb{K} be a field and let $S = \mathbb{K}[x_1, \ldots, x_n]$ be the polynomial ring in n variables over \mathbb{K} . Let M be a finitely generated \mathbb{Z}^n -graded S-module. Let $u \in M$ be a homogeneous element and $Z \subseteq \{x_1, \ldots, x_n\}$. The \mathbb{K} -subspace $u\mathbb{K}[Z]$ generated by all elements uv, with v a

URL: http://math.ipm.ac.ir/~fakhari/.

 $\label{eq:http://dx.doi.org/10.1016/j.jalgebra.2017.07.011} 0021-8693 @ 2017 Elsevier Inc. All rights reserved.$

ALGEBRA

E-mail address: aminfakhari@ut.ac.ir.

monomial in $\mathbb{K}[Z]$, is called a *Stanley space* of dimension |Z|, if it is a free $\mathbb{K}[Z]$ -module. Here, as usual, |Z| denotes the number of elements of Z. A decomposition \mathcal{D} of M as a finite direct sum of Stanley spaces is called a *Stanley decomposition* of M. The minimum dimension of a Stanley space in \mathcal{D} is called the *Stanley depth* of \mathcal{D} and is denoted by sdepth(\mathcal{D}). The quantity

$$\operatorname{sdepth}(M) := \max \left\{ \operatorname{sdepth}(\mathcal{D}) \mid \mathcal{D} \text{ is a Stanley decomposition of } M \right\}$$

is called the Stanley depth of M. We say that a \mathbb{Z}^n -graded S-module M satisfies Stanley's inequality if

$$\operatorname{depth}(M) \leq \operatorname{sdepth}(M).$$

In fact, Stanley [16] conjectured that every \mathbb{Z}^n -graded S-module satisfies Stanley's inequality. This conjecture has been recently disproved in [1]. However, it is still interesting to find the classes of \mathbb{Z}^n -graded S-modules which satisfy Stanley's inequality. For a reader friendly introduction to Stanley depth, we refer to [10] and for a nice survey on this topic, we refer to [6].

Let G be a graph with vertex set $V(G) = \{v_1, \ldots, v_n\}$. The edge ideal I(G) of G is the ideal of S generated by the squarefree monomials $x_i x_j$, where $\{v_i, v_j\}$ is an edge of G. In [12], the authors proved that if G is a forest (i.e., a graph with no cycle), then $S/I(G)^k$ satisfies Stanley's inequality for every integer $k \gg 0$. Also, it was shown in [2] that $I(G)^k/I(G)^{k+1}$ satisfies Stanley's inequality for every forest G and every integer $k \gg 0$. The aim of this paper is to extend theses results to the whole class of graphs. In Theorem 2.3, we prove that for every graph G, the inequality sdepth $(S/I(G)^k) \ge p$ holds, where p is the number of bipartite components of G. Combining this inequality with a recent result of Trung [17], we conclude that $S/I(G)^k$ satisfies Stanley's inequality for every integer $k \ge n-1$ (see Corollary 2.5). In Theorem 2.2, we study the Stanley depth of $I(G)^k/I(G)^{k+1}$ and prove that sdepth $(I(G)^k/I(G)^{k+1}) \ge p$, for every integer $k \ge 0$. Combining this inequality with a result of Herzog and Hibi [7], we deduce that $I(G)^k/I(G)^{k+1}$ satisfies Stanley's inequality for large k (see Corollary 2.6).

In Section 2, we investigate the Stanley depth of $I(G)^k$, for a positive integer k. In Theorem 3.1, we determine a lower bound for the Stanley depth of $I(G)^k$. In Corollaries 3.2 and 3.5, we prove that if (i) G is a non-bipartite graph, or (ii) at least one of the connected components of G is a tree (i.e., a connected forest) with at least one edge, then for every positive integer k, the Stanley depth of $I(G)^k$ is at least one more than the number of bipartite connected components of G. Then we conclude that for theses classes of graphs, the ideal $I(G)^k$ satisfies Stanley's inequality, for every $k \ge n-1$, where n = |V(G)| (see Corollary 3.6). Download English Version:

https://daneshyari.com/en/article/5771734

Download Persian Version:

https://daneshyari.com/article/5771734

Daneshyari.com