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SHIFTED SYMMETRIC FUNCTIONS AND MULTIRECTANGULAR
COORDINATES OF YOUNG DIAGRAMS

PER ALEXANDERSSON AND VALENTIN FÉRAY

Abstract. In this paper, we study shifted Schur functions S�
μ, as well as a new family of shifted

symmetric functions Kμ linked to Kostka numbers. We prove that both are polynomials in multi-
rectangular coordinates, with nonnegative coefficients when written in terms of falling factorials.
We then propose a conjectural generalization to the Jack setting. This conjecture is a lifting of Knop

and Sahi’s positivity result for usual Jack polynomials and resembles recent conjectures of Lassalle. We
prove our conjecture for one-part partitions.

1. Introduction

We use standard notation for partitions and symmetric functions, which is recalled in Section 2.

1.1. Shifted symmetric functions. Informally, a shifted symmetric function is a formal power series in
infinitely many variables x1, x2, . . . that has bounded degree and is symmetric in the “shifted” variables
x1 − 1, x2 − 2, . . . (a formal definition is given in Section 2.5).

Many properties of symmetric functions have natural analogue in the shifted framework. Unlike in
symmetric function theory, it is often relevant to evaluate a shifted symmetric function F on the parts
of a Young diagram λ = (λ1, . . . , λ�). Then we denote F (λ) := F (λ1, . . . , λ�, 0, 0, . . . ). It turns out
that shifted symmetric functions are determined by their image on Young diagrams, so that the shifted
symmetric function ring will be identified with a subalgebra of the algebra of functions on the set of all
Young diagrams (without size nor length restriction).

Shifted symmetric functions were introduced by Okounkov and Olshanski in [OO97b]. In this paper,
the authors are particularly interested in the basis of shifted Schur functions, which can be defined as
follows: for any integer partition μ and any n ≥ 1,

S�
μ(x1, . . . , xn) =

det
(
(xi + n − i)μj+n−j

)
det ((xi + n − i)n−j) ,

where (x)k denotes the falling factorial x(x − 1) · · · (x − k + 1). Note the similarity with the definition
of Schur functions [Mac95, p. 40]: in particular, the highest degree terms of S�

μ is the Schur function
Sμ. Shifted Schur functions are also closely related to factorial Schur polynomials, originally defined by
Biedenharn and Louck in [BL89] and further studied, e.g., in [Mac92, MS99]. These functions display
beautiful properties:

• Some well-known formulas involving Schur functions have a natural extension to shifted Schur
functions, e.g., the combinatorial expansion in terms of semi-standard Young tableaux [OO97b,
Theorem 11.1] and the Jacobi-Trudi identity [OO97b, Theorem 13.1].

• The evaluation S�
μ(λ) of a shifted Schur function indexed by μ on a Young diagram λ has a

combinatorial meaning: it vanishes if λ does not contain μ and is related to the number of
standard Young tableaux of skew shape λ/μ otherwise; see [OO97b, Theorem 8.1]. Note that
this beautiful property has no analogue for usual (i.e., non-shifted) symmetric functions.

• Lastly, they appear as eigenvalues of elements of well-chosen bases in highest weight modules for
classical Lie groups, see [OO98].
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