

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Fano 4-folds, flips, and blow-ups of points

C. Casagrande

Università di Torino, Dipartimento di Matematica, via Carlo Alberto 10, 10123 Torino, Italy

ARTICLE INFO

Article history: Received 15 February 2016 Available online 12 April 2017 Communicated by Steven Dale Cutkosky

MSC: 14J45

14J35 14E30

Keywords:
Fano 4-folds
Birational geometry
Picard number

ABSTRACT

We study smooth, complex Fano 4-folds X with large Picard number ρ_X , with techniques from birational geometry. Our main result is that if X is isomorphic in codimension one to the blow-up of a smooth projective 4-fold Y at a point, then $\rho_X \leq 12$. We give examples of such X with Picard number up to 9. The main theme (and tool) is the study of fixed prime divisors in Fano 4-folds, especially in the case $\rho_X > 6$, in which we give some general results of independent interest.

© 2017 Elsevier Inc. All rights reserved.

Contents

1.	Introduction			
2.	Notat	tations and preliminaries		
	2.1.	Preliminaries from the MMP and on Mori dream spaces	366	
	2.2.	Families of curves	369	
	2.3.	Flips and SQM's of a smooth 4-fold	369	
	2.4.	Preliminary results on Fano 4-folds	371	
	2.5.	Faces of the effective cone	374	
3.	Blowi	Blowing-up many points		
	3.1.	Behavior of $\chi(X, -K_X)$ under blow-up in a 4-fold	376	
	3.2.	Proof of Theorems 1.2 and 3.2	378	

E-mail address: cinzia.casagrande@unito.it.

4.	Bound	ing ρ_X when every fixed divisor is of type $(3,0)^{sm}$
	4.1.	Fixed divisors of type $(3,0)^{sm}$
	4.2.	Fano 4-folds where every fixed divisor is of type $(3,0)^{sm}$
5.	Fixed	divisors in Fano 4-folds with $\rho \geq 6$
	5.1.	The type of a fixed prime divisor
	5.2.	Fixed divisors of type $(3,1)^{sm}$
	5.3.	Fixed divisors of type $(3,0)^Q$
	5.4.	Elementary divisorial rational contractions
	5.5.	The dual of the cone of movable divisors
	5.6.	Fixed divisors of type (3,2)
	5.7.	Proof of Theorem 1.1
6.		bles
Ackno	owledgr	nents
Refere	ences .	

1. Introduction

In this paper we study (smooth, complex) Fano 4-folds X with large Picard number ρ_X . Let us recall that ρ_X is equal to the second Betti number of X, and since there are finitely many families of Fano 4-folds, ρ_X is bounded. We also have an explicit bound on ρ_X (see [11, Remark 3.1]), which however is, conjecturally, far from being sharp; the maximal value of ρ_X for a Fano 4-fold X is not yet known.

As for examples, taking products of del Pezzo surfaces one gets Fano 4-folds with Picard number up to 18; to the author's knowledge, the other known examples of Fano 4-folds have $\rho \leq 9$. In fact, for $\rho = 7, 8, 9$, the author is aware of only one family (for each ρ) of Fano 4-folds which is not a product of surfaces, obtained as follows. Consider the blow-up $\mathrm{Bl}_{p_1,\ldots,p_r}\mathbb{P}^4$ of \mathbb{P}^4 in r general points. For $r=2,\ldots,8$ this variety is not Fano, but can be modified with a finite sequence of flips¹ in order to get a smooth Fano 4-fold X with $\rho_X=1+r\leq 9$; we refer the reader to Example 6.1 for more details.

The main object of this paper is the study of Fano 4-folds obtained as in the previous example: by the blow-up of a (smooth) point, followed by a sequence of flips.

Let us first recall that Fano manifolds that can be obtained by blowing-up a point in another manifold have been classified, in arbitrary dimension ≥ 3 , by Bonavero, Campana, and Wiśniewski [8]; in particular such X always has $\rho_X \leq 3$.

In the case where we allow also flips, our main result is a bound on the Picard number.

Theorem 1.1. Let X be a smooth Fano 4-fold. Suppose that there exist a normal and \mathbb{Q} -factorial projective variety Y, and a smooth point $p \in Y$, such that X and $\mathrm{Bl}_p Y$ are isomorphic in codimension one. Then $\rho_X \leq 12$.

 $^{^{1}}$ These are K-positive flips, in the terminology of this paper.

Download English Version:

https://daneshyari.com/en/article/5771759

Download Persian Version:

https://daneshyari.com/article/5771759

<u>Daneshyari.com</u>