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Let G be a graph with n vertices and let S = K[x1, . . . , xn] be 
the polynomial ring in n variables over a field K. Assume that 
J(G) is the cover ideal of G and J(G)(k) is its k-th symbolic 
power. We prove that the sequences {sdepth(S/J(G)(k))}∞k=1
and {sdepth(J(G)(k))}∞k=1 are non-increasing and hence 
convergent. Suppose that νo(G) denotes the ordered matching 
number of G. We show that for every integer k ≥ 2νo(G) − 1, 
the modules J(G)(k) and S/J(G)(k) satisfy the Stanley’s 
inequality. We also provide an alternative proof for [9, 
Theorem 3.4] which states that depth(S/J(G)(k)) = n −
νo(G) − 1, for every integer k ≥ 2νo(G) − 1.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let S = K[x1, . . . , xn] be the polynomial ring in n variables over a field K and suppose 
that M is a nonzero finitely generated Zn-graded S-module. Let u ∈ M be a homogeneous 
element and Z ⊆ {x1, . . . , xn}. The K-subspace uK[Z] generated by all elements uv with 
v ∈ K[Z] is called a Stanley space of dimension |Z|, if it is a free K[Z]-module. Here, as 

E-mail address: aminfakhari@ut.ac.ir.
URL: http://math.ipm.ac.ir/~fakhari/.

https://doi.org/10.1016/j.jalgebra.2017.08.032
0021-8693/© 2017 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jalgebra.2017.08.032
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
mailto:aminfakhari@ut.ac.ir
http://math.ipm.ac.ir/~fakhari/
https://doi.org/10.1016/j.jalgebra.2017.08.032
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jalgebra.2017.08.032&domain=pdf


S.A. Seyed Fakhari / Journal of Algebra 492 (2017) 402–413 403

usual, |Z| denotes the number of elements of Z. A decomposition D of M as a finite direct 
sum of Stanley spaces is called a Stanley decomposition of M . The minimum dimension 
of a Stanley space in D is called the Stanley depth of D and is denoted by sdepth(D). 
The quantity

sdepth(M) := max
{
sdepth(D) | D is a Stanley decomposition of M

}
is called the Stanley depth of M . As a convention, we set sdepth(M) = ∞, when M is 
the zero module. We say that a Zn-graded S-module M satisfies the Stanley’s inequality
if

depth(M) ≤ sdepth(M).

In fact, Stanley [20] conjectured that every Zn-graded S-module satisfies the Stanley’s 
inequality. We refer to [14] for a reader friendly introduction to Stanley depth, and to 
[7] for a nice survey on this topic.

The Stanley’s conjecture has been recently disproved in [5]. The counterexample pre-
sented in [5] lives in the category of squarefree monomial ideals. Thus, one can still ask 
whether the Stanley’s inequality holds for non-squarefree monomial ideals. Of particu-
lar interest are the high powers of monomial ideals. In other words, we ask following 
question.

Question 1.1. Let I be a monomial ideal. Is it true that Ik and S/Ik satisfy the Stanley’s 
inequality for every integer k � 0?

We approached this question for edge ideals in [1], [15] and [17]. The most general 
results are obtained in [17]. In that paper, we proved that if G is a graph with n vertices 
and I(G) is its edge ideal, then S/I(G)k satisfies the Stanley’s inequality for every integer 
k ≥ n − 1 [17, Corollary 2.5]. If moreover G is a non-bipartite graph, or at least one of 
the connected components of G is a tree with at least one edge, then I(G)k satisfies the 
Stanley’s inequality for every integer k ≥ n − 1 [17, Corollary 3.6].

Recently, in [16], we studied the powers of cover ideal of bipartite graphs. We proved 
in [16, Corollary 3.5] that if G is a bipartite graph with cover ideal J(G), then J(G)k
and S/J(G)k satisfy the Stanley’s conjecture for k � 0. On the other hand, we know 
from [6, Corollary 2.6] that for every bipartite graph G and every integer k ≥ 1, we have 
J(G)k = J(G)(k), where J(G)(k) denotes the k-th symbolic power of J(G). Hence, [16, 
Corollary 3.5] essentially says that for any bipartite graph G, the modules J(G)(k) and 
S/J(G)(k) satisfy the Stanley’s inequality for every integer k � 0. In this regard, we ask 
an analogue of Question 1.1 for symbolic powers.

Question 1.2. Let I be a squarefree monomial ideal. Is it true that I(k) and S/I(k) satisfy 
the Stanley’s inequality for every integer k � 0?
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