Construction of idempotent 2-cocycles

Ch. Lamprakis, Th. Theohari-Apostolidi *
School of Mathematics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece

A R T I C L E I N F O

Article history:
Received 6 April 2016
Available online 27 September 2017
Communicated by Louis Rowen

$M S C$:

primary $16 \mathrm{~S} 35,16 \mathrm{H} 05,11 \mathrm{~S} 20,11 \mathrm{~S} 45$
secondary 16 W 50

A B S T R A C T

Let $f: G \times G \longrightarrow L$ be a weak 2 -cocycle, where L / K is a finite Galois field extension with Galois group G, and $A_{f}=$ $(L / K, f)$ be the associated weak crossed product K-algebra. We associate a partition of G to A_{f} and construct idempotent 2-cocycles of A_{f}.

Keywords:
Galois extension
Galois cohomology
Crossed product algebra
Weak 2-cocycle
Weak crossed product algebra
Semigroups
Ordered set

1. Introduction

Let L / K be a finite Galois field extension with Galois group G and $L^{*}:=L \backslash\{0\}$. A function $f: G \times G \longrightarrow L^{*}$ is called normalized 2-cocycle when the following conditions are satisfied:

[^0]\[

\left\{$$
\begin{array}{l}
f(\sigma, \tau) f(\sigma \tau, \rho)=f^{\sigma}(\tau, \rho) f(\sigma, \tau \rho), \quad \text { for } \sigma, \tau, \rho \in G \tag{1.1}\\
f(\sigma, 1)=f(1, \sigma)=1, \quad \text { for } \sigma \in G,
\end{array}
$$\right.
\]

where l^{σ} means $\sigma(l)$, for $\sigma \in G$ and $l \in L$, and 1 is the unit element of G. If we allow f to take values on L instead of L^{*}, then we are referring to a weak 2-cocycle. Two weak 2-cocycles f and g are called cohomologous, written $f \sim g$, if there is a function $a: G \longrightarrow L^{*}$ such that

$$
f(\sigma, \tau)=\frac{a(\sigma) a^{\sigma}(\tau)}{a(\sigma \tau)} g(\sigma, \tau), \quad \text { for } \sigma, \tau \in G
$$

Let $M^{2}(G, L)$ be the set of equivalent classes of the weak 2-cocycles from G to L, which under the pointwise multiplication forms a monoid.
D.E. Haile, R.G. Larson and M.E. Sweedler in [3] studied the weak 2-cocycles and the monoid $M^{2}(G, L)$, where they introduced a new cohomology theory based on weak 2-cocycles. The resulting cohomology monoids give new invariants even in classical settings as \mathbb{C} and \mathbb{R}. Associated to a weak 2-cocycle f there is a K-algebra A_{f}, called the weak crossed product algebra associated to f. The K-algebra A_{f} is defined as a K-vector space

$$
A_{f}=\bigoplus_{\sigma \in G} L u_{\sigma}
$$

having as an L-basis the elements $u_{\sigma}, \sigma \in G$, and multiplication defined by the rules

$$
u_{\sigma} l=l^{\sigma} u_{\sigma} \quad \text { and } \quad u_{\sigma} u_{\tau}=f(\sigma, \tau) u_{\sigma \tau}
$$

for all $\sigma, \tau \in G$ and $l \in L$. The cocycle condition (1.1) guarantees that A_{f} is an associative K-algebra with unit element u_{1}, that we denote also by 1 . It is easy to see that, for f, g two weak 2-cocycles, $f \backsim g$ if and only if there is a K-algebra isomorphism $\phi: A_{f} \rightarrow A_{g}$ such that $\left.\phi\right|_{L}=1_{L}$. Let $H(f)=\left\{\sigma \in G: f\left(\sigma, \sigma^{-1}\right) \neq 0\right\}$. It was shown in ([3], Section 10) that $H(f)$ is a subgroup of G, called the inertial subgroup of f, and

$$
\begin{equation*}
A_{f}=B \oplus J_{f} \tag{1.2}
\end{equation*}
$$

where

$$
B=\bigoplus_{\sigma \in H(f)} L u_{\sigma} \quad \text { and } \quad J_{f}=\bigoplus_{\sigma \notin H(f)} L u_{\sigma}
$$

The algebra B is a central simple L^{H}-algebra, where L^{H} is the fixed field of $H(f)$, and J_{f} is the Jacobson radical of A_{f}. In other words the relation (1.2) gives the Wedderburn splitting of A_{f}. In ([3], Section 7) it was shown that

https://daneshyari.com/en/article/5771787

Download Persian Version:

https://daneshyari.com/article/5771787

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: chrlambr@hotmail.com (Ch. Lamprakis), theohari@math.auth.gr (Th. Theohari-Apostolidi).

