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In his 1951 book “Infinite Abelian Groups”, Kaplansky gives 
a combinatorial characterization of the isomorphism types of 
embeddings of a cyclic subgroup in a finite abelian group. In 
this paper we first use partial maps on Littlewood–Richardson 
tableaux to generalize this result to finite direct sums of such 
embeddings. Our main interest is an application to invariant 
subspaces of nilpotent linear operators. We develop a criterion 
to decide if two irreducible components in the representation 
space are in the boundary partial order.
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1. Introduction

Let Λ be a discrete valuation ring with maximal ideal generator p and radical factor 
field k.

We study the category of all embeddings (A ⊂ B) of a submodule A in a finite length 
Λ-module B. Two examples are of particular interest: If Λ = Ẑ(p) is the completion 
of the ring of p-adic integers, then we are dealing with embeddings of a subgroup in a 
finite abelian p-group. Their classification, up to isomorphy, is the well-known Birkhoff 
Problem [1]. On the other hand, if Λ = k[[T ]] is the power series ring, then an embedding 
(A ⊂ B) consists of a nilpotent linear operator B and an invariant subspace A.

In general, any finite length Λ-module A is isomorphic to a direct sum

A ∼= Λ/(pα1) ⊕ Λ/(pα2) ⊕ . . .⊕ Λ/(pαn),

where α1 ≥ α2 ≥ . . . ≥ αn. Therefore, there is a bijection (A �→ α = (α1, . . . , αn)) be-
tween the set of isomorphism classes of finite length Λ-modules and the set of partitions. 
The partition α is the type of A and we write A ∼= Nα(Λ) = Nα.

It is natural to associate with an embedding (A ⊂ B) of finite length Λ-modules 
the triple of partitions (α, β, γ), where α, β, γ are the types of A, B and C = B/A, 
respectively.

We call an embedding (A ⊂ B) cyclic provided the submodule A is cyclic as 
a Λ-module, that is, A is either indecomposable or zero. Cyclic embeddings have been 
classified, up to isomorphy, by Kaplansky [3, Theorem 25] in terms of the “height se-
quence” or “Ulm sequence” of the submodule generator. The first aim in this paper is 
to derive a simple combinatorial description of the isomorphism types of direct sums of 
cyclic embeddings. They are given in terms of partial maps on Littlewood–Richardson 
tableaux (Theorem 2.4).

The main goal of the paper is to shed light on the geometry of the representation 
space of invariant subspace varieties. Suppose that Λ is the power series ring k[[T ]] with 
coefficients in an algebraically closed field k. The embeddings corresponding to partition 
type (α, β, γ) form a constructible subset Vβ

α,γ = {f : Nα ↪→ Nβ : Cokf ∼= Nγ} of the 
affine variety of all k-linear homomorphisms Homk(A, B). By the Theorem of Green and 
Klein [4], the variety is non-empty if and only if there exists a Littlewood–Richardson 
tableau (LR-tableau) of type (α, β, γ). More precisely, we can assign to each embedding 
a tableau; by VΓ we denote the subset of Vβ

α,γ of all embeddings with tableau Γ. Then

V
β
α,γ =

•⋃
Γ
VΓ,

where the union is indexed by the LR-tableaux of type (α, β, γ). The closures (in the 
Zariski topology) VΓ form the irreducible components of Vβ

α,γ, see Section 2.2 and [9]
for details.
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