# Lower bounds on projective levels of complexes 

Hannah Altmann ${ }^{\text {a,* }}$, Eloísa Grifo ${ }^{\text {b,* }}$, Jonathan Montaño ${ }^{\text {c,* }}$, William T. Sanders ${ }^{\text {d,* }}$, Thanh Vu ${ }^{\text {e,* }}$<br>a Department of Mathematics and Computer Science, Bemidji State University, 1500 Birchmont Drive NE, Box 23, Bemidji, MN 56601, USA<br>b Department of Mathematics, University of Virginia, 141 Cabell Drive, Kerchof Hall, Charlottesville, VA 22904, USA<br>c Department of Mathematics, University of Kansas, 405 Snow Hall, 1460 Jayhawk Blvd, Lawrence, KS 66045, USA<br>d Department of Mathematical Sciences, Norwegian University of Science and Technology, NTNU, NO-7491 Trondheim, Norway<br>e Department of Mathematics, University of Nebraska-Lincoln, 203 Avery Hall, Lincoln, NE 68588, USA

## A R T I C L E I N F O

## Article history:

Received 18 December 2015
Available online 24 August 2017
Communicated by Luchezar L.
Avramov

## $M S C$ :

13D02
16 E 45
13D07
13D25
13 H 10
20J06
Keywords:
Perfect complex
Level
New Intersection Theorem
Koszul complex

## A B S T R A C T

For an associative ring $R$, the projective level of a complex $F$ is the smallest number of mapping cones needed to build $F$ from projective $R$-modules. We establish lower bounds for the projective level of $F$ in terms of the vanishing of homology of $F$. We then use these bounds to derive a new version of The New Intersection Theorem for level when $R$ is a commutative Noetherian local ring.
© 2017 Elsevier Inc. All rights reserved.

[^0]
## Introduction

Let $R$ be an associative ring and $F$ a complex of left $R$-modules. The projective level of $F$, denoted by level ${ }^{\mathcal{P}}(F)$, is the smallest number of steps needed to assemble some projective resolution of $F$ from complexes of projective modules that have zero differentials (see Section 1 for details). Projective level is a special case of a general notion of level in triangulated categories, which was introduced and studied by Avramov, Buchweitz, Iyengar, and Miller in [3]. It was partly motivated by earlier work of Christensen [8]; Bondal and Van den Bergh [7]; Dwyer, Greenlees, and Iyengar [9]; Rouquier [17]; and Krause and Kussin [16].

Upper bounds for projective level are relatively easy to obtain, since any explicit construction of a projective resolution provides such a bound; in particular, level ${ }^{\mathcal{P}}(F)$ does not exceed the number of non-zero modules in a projective resolution of $F$. This paper focuses on lower bounds.

In Section 2, we prove the following theorem which gives a lower bound on the projective level of a complex $F$ in terms of the largest gap in the homology of $F$.

Theorem 2.1. Let $F$ be a complex of $R$-modules. Assume $\mathrm{H}_{i}(F)=0$ for all $a<i<b$ with $a, b \in \mathbb{Z}$ and $\mathrm{H}_{0}\left(\Omega_{b-1}^{R}(F)\right)$ is not projective. Then

$$
\operatorname{level}^{\mathcal{P}}(F) \geqslant b-a+1
$$

Here, $\Omega_{b-1}^{R}(F)$ is the $(b-1)$ th syzygy of $F$ (see Section 1 ).
Restricting to commutative Noetherian local rings, in Section 3 we apply Theorem 2.1 to deduce a new version of The New Intersection Theorem. In the following result, level ${ }^{R}(F)$ is the smallest number of mapping cones needed to build $F$ from finitely generated free $R$-modules.

Theorem 3.1. Let $R$ be a Noetherian local ring. Let

$$
F:=0 \longrightarrow F_{n} \longrightarrow \cdots \longrightarrow F_{0} \longrightarrow 0
$$

be a complex of finitely generated free R-modules such that $\mathrm{H}_{i}(F)$ has finite length for every $i \geqslant 1$. For any ideal I that annihilates a minimal generator of $\mathrm{H}_{0}(F)$, there is an inequality

$$
\operatorname{level}^{R}(F) \geqslant \operatorname{dim}(R)-\operatorname{dim}(R / I)+1
$$

This result refines strong forms of the Improved New Intersection Theorem of Evans and Griffith [10], due to Bruns and Herzog [6] and Iyengar [15]. The proof uses the existence of balanced big Cohen-Macaulay algebras which was recently proved in [1]. Furthermore, in Theorem 3.2, we use Theorem 3.1 to prove that for every commutative Noetherian

# https://daneshyari.com/en/article/5771811 

Download Persian Version:
https://daneshyari.com/article/5771811

## Daneshyari.com


[^0]:    * Corresponding authors.

    E-mail addresses: haltmann@bemidjistate.edu (H. Altmann), er2eq@virginia.edu (E. Grifo), jmontano@ku.edu (J. Montaño), william.sanders@math.ntnu.no (W.T. Sanders), tvu@unl.edu (T. Vu).

