

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

On the discriminant of twisted tensor products

Jason Gaddis, Ellen Kirkman*, W. Frank Moore

Wake Forest University, Department of Mathematics and Statistics, P.O. Box 7388, Winston-Salem, NC 27109, United States

ARTICLE INFO

Article history: Received 19 July 2016 Available online 3 January 2017 Communicated by Louis Rowen

MSC: 16W20 11R29 16S36

16S35

Keywords:
Discriminant
Twisted tensor product
Ore extension
Skew group ring
Automorphism group

ABSTRACT

We provide formulas for computing the discriminant of noncommutative algebras over central subalgebras in the case of Ore extensions and skew group extensions. The formulas follow from a more general result regarding the discriminants of certain twisted tensor products. We employ our formulas to compute automorphism groups for examples in each case.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Throughout \mathbb{k} is an algebraically closed, characteristic zero field and all algebras are \mathbb{k} -algebras. All unadorned tensor products should be regarded as over \mathbb{k} . Given an algebra R, we denote by R^{\times} the set of units in R. If $\sigma \in \operatorname{Aut}(R)$, then R^{σ} denotes the subalgebra of elements of R that are fixed under σ . We denote the center of R by C(R).

^{*} Corresponding author.

 $[\]textit{E-mail addresses:} \ gaddisjd@wfu.edu \ (J.\ Gaddis), \ kirkman@wfu.edu \ (E.\ Kirkman), \ moorewf@wfu.edu \ (W.F.\ Moore).$

Automorphism groups of commutative and noncommutative algebras can be notoriously difficult to compute. For example, $\operatorname{Aut}(\mathbb{k}[x,y,z])$ is not yet fully understood. In [2], the authors give a method for determining the automorphism groups of noncommutative algebras using the discriminant. This was studied further in [3–6]. Discriminants of deformations of polynomial rings were computed using Poisson geometry in [11,13].

We refer the reader to [2] for the general definitions of trace and discriminant in the context of noncommutative algebras. We review the definitions only in the case that B is an algebra finitely generated free over a central subalgebra $R \subseteq C(B)$ of rank n.

Left multiplication defines a natural embedding $\operatorname{lm}: B \to \operatorname{End}_C(B) \cong M_n(R)$. The usual matrix trace defines a map $\operatorname{tr}_{\operatorname{int}}: M_n(R) \to R$ called the internal trace. The regular trace is defined as the composition $\operatorname{tr}_{\operatorname{reg}}: B \xrightarrow{\operatorname{lm}} M_n(R) \xrightarrow{\operatorname{tr}_{\operatorname{int}}} R$. For our purposes, tr will be $\operatorname{tr}_{\operatorname{reg}}$.

Let ω be a fixed integer and $Z := \{z_i\}_{i=1}^{\omega}$ a subset of B. The discriminant of Z is defined to be

$$d_{\omega}(Z) = \det(\operatorname{tr}(z_i z_j))_{\omega \times \omega} \in R.$$

If Z is an R-basis of B, then the discriminant of B over R is defined to be

$$d(B/R) =_{R^{\times}} d_{\omega}(Z),$$

where $x =_{R^{\times}} y$ means x = cy for some $c \in R^{\times}$.

The discriminant is independent of R-linear bases of B [2, Proposition 1.4]. Moreover, if $\phi \in \operatorname{Aut}(B)$ and ϕ preserves R, then ϕ preserves the ideal generated by d(B/R) [2, Lemma 1.8].

Computing the discriminant is a computationally difficult task, even for algebras with few generators. For example, the matrix obtained from $\operatorname{tr}(z_i z_j)$ for the skew group algebra $\mathbb{k}_{-1}[x_1, x_2, x_3] \# \mathcal{S}_3$ has size 288×288 . Our first goal is to provide methods for obtaining the discriminant in cases where the algebra may be realized as an extension of a smaller algebra where computations may be easier.

If A is an algebra and $\sigma \in \operatorname{Aut}(A)$, then the Ore extension $A[t;\sigma]$ is generated by A and t with the rule $ta = \sigma(a)t$ for all $a \in A$.

Theorem 1 (Theorem 6.1). Let A be an algebra and set $S = A[t; \sigma]$, where $\sigma \in \operatorname{Aut}(A)$ has order $m < \infty$ and no σ^i , $1 \le i < m$, is inner. Suppose R is a central subalgebra of S and set $B = R \cap A^{\sigma}$. If A is finitely generated free over B of rank n and $R = B[t^m]$, then S is finitely generated free over R and

$$d(S/R) =_{R^{\times}} (d(A/B))^m (t^{m-1})^{mn}.$$

We say an automorphism σ of A is inner if there exists $a \in A$ such that $xa = a\sigma(x)$ for all $x \in A$. This is not the standard definition of an inner automorphism but it agrees if a

Download English Version:

https://daneshyari.com/en/article/5771825

Download Persian Version:

https://daneshyari.com/article/5771825

<u>Daneshyari.com</u>