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In the representation theory of split reductive algebraic 
groups, it is well known that every Weyl module with mi-
nuscule highest weight is irreducible over every field. Also, 
the adjoint representation of E8 is irreducible over every field. 
In this paper, we prove a converse to these statements, as 
conjectured by Gross: if a Weyl module is irreducible over 
every field, it must be either one of these, or trivially con-
structed from one of these. We also prove a related result on 
non-degeneracy of the reduced Killing form.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Split semisimple linear algebraic groups over arbitrary fields can be viewed as a gen-
eralization of semisimple Lie algebras over the complex numbers, or even compact real 
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Lie groups. As with Lie algebras, such algebraic groups are classified up to isogeny by 
their root system. Moreover, the set of irreducible representations of such a group is in 
bijection with the cone of dominant weights for the root system and the representation 
ring — i.e., K0 of the category of finite-dimensional representations — is a polynomial 
ring with generators corresponding to a basis of the cone.

One way in which this analogy breaks down is that, for an algebraic group G over a 
field k of prime characteristic, in addition to the irreducible representation L(λ) cor-
responding to a dominant weight λ, there are three other representations naturally 
associated with λ, namely the standard module H0(λ), the Weyl module V (λ), and 
the tilting module T (λ).3 The definition of H0(λ) is particularly simple: view k as a one-
dimensional representation of a Borel subgroup B of G where B acts via the character λ, 
then define H0(λ) := indG

B λ to be the induced G-module. The Weyl module V (λ) is the 
dual of H0(−w0λ) for w0 the longest element of the Weyl group and has head L(λ). 
Typical examples of Weyl modules are Lie(G) for G semisimple simply connected (V (λ)
for λ the highest root) and the natural module of SOn. See [22] for general background 
on these three families of representations.

It turns out that if any two of the four representations L(λ), H0(λ), V (λ), T (λ) are 
isomorphic over a given field k, then all four are. Our focus is on the question: for which 
λ are all four isomorphic for every field k?

This can be interpreted as a question about representations of split reductive group 
schemes over Z. Recall that isomorphism classes of such groups are in bijection with 
(reduced) root data as described in [8, XXIII.5.2]. A root datum for a group G includes 
a character lattice X(T ) of a split maximal torus T and the set R ⊂ X(T ) of roots of G
with respect to T . Picking an ordering on R specifies a cone of dominant weights X(T )+
in X(T ). For each λ ∈ X(T )+, there is a representation V (λ) for G, defined over Z, 
that is generated by a highest weight vector with weight λ such that V (λ) ⊗ C is the 
irreducible representation with highest weight λ of the complex reductive group G × C

and for every field k, V (λ) ⊗ k is the Weyl module of G × k mentioned above, see [22, 
II.8.3] or [34, p. 212]. Consequently, the question in the preceding paragraph is the same 
as asking: For which G and λ is it true that V (λ) ⊗ k is an irreducible representation of 
G ×k for every field k? Because G is split, V (λ) ⊗k is irreducible if and only if V (λ) ⊗P

is irreducible where P is the prime field of k.4 Therefore, it is natural to call such V (λ)
globally irreducible.

There is a well known and elementary sufficient criterion:

If λ is minuscule, then V (λ) ⊗ k is irreducible for every field k. (1)

See §2 for the definition of minuscule. This provides an important family of examples, 
because representations occurring in this way include Λr(V ) for 1 ≤ r < n where V is 

3 The definitions of these three modules make sense also when char k = 0, and in that case all four modules 
are isomorphic.
4 See [22, II.2.9]. For a detailed study of how this fails when G is not split, see [37].
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