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We prove a generalization of Gotzmann’s persistence theorem 
in the case of modules with constant Hilbert polynomial. As a 
consequence, we show that the defining equations that give the 
embedding of a Quot scheme of points into a Grassmannian 
are given by a single Fitting ideal.
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0. Introduction

One of the main results of this paper is the following.

Theorem A. Let A be a ring, let S = A[X0, . . . , Xr], let M =
⊕p

i=1 S, and let N be 
a graded S-submodule of M , generated in degrees at most d. Write Q = M/N and let 
n ≤ d. If Qt is locally free of rank n for t = d and t = d + 1, then Qt is locally free of 
rank n for all t ≥ d.
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This theorem concerns homogeneous submodules N ⊆
⊕p

i=1 A[X0, . . . , Xr] generated 
in degrees at most d, for some d. A special case of such a submodule is a homoge-
neous ideal I ⊆ A[X0, . . . , Xr] generated in degrees at most d. In that case, when A is 
noetherian, we have Gotzmann’s persistence theorem [7] which states that if the graded 
component Qt of the quotient Q = A[X0, . . . , Xr]/I is flat over A for t = d and t = d +1, 
and rankA Qd+1 = (rankA Qd)〈d〉, then there are two implications. Firstly, the graded 
component Qt is flat over A for all t ≥ d, so Q has a Hilbert polynomial P (t). Secondly, 
the theorem states that P (t + 1) = rankA Qt+1 = (rankA Qt)〈t〉 for all t ≥ d.

We have here used Macaulay representations to describe the assumption on the rank 
in Gotzmann’s persistence theorem, see [1, Section 4.2]. In other words, the theorem says 
that if the Hilbert function of Q has a maximal growth from degree d to degree d + 1, 
then the homogeneous components in all higher degrees are flat and the Hilbert function 
h(t) = rankA Qt equals the Hilbert polynomial P (t) for all degrees t ≥ d. In the case 
when rankA Qd = n ≤ d, we have that (rankA Qt)〈t〉 = n for all t ≥ d. Thus, Theorem A
is a generalization of this result for the case with constant Hilbert polynomial P (t) = n.

Note that Gasharov [5] has proved a generalization of Gotzmann’s persistence theorem 
to modules in the case of polynomial rings over fields, where the flatness is trivial, and 
that our result extends this to polynomial rings over arbitrary rings.

Our interest in the result of Theorem A comes from its application to Quot schemes. 
In algebraic geometry, Gotzmann’s persistence theorem has been used to find defining 
equations of Hilbert schemes, see, e.g., [7] and [10, Appendix C]. The Quot scheme is a 
generalization of both Hilbert schemes and Grassmannians, and is therefore a natural 
object to study. It was first introduced by Grothendieck who also proved its existence 
using an embedding into a Grassmannian [8]. This embedding was however only given 
abstractly. For the case with constant Hilbert polynomials, Skjelnes proved that the 
embedding of the Quot scheme of points into a Grassmannian is given by an infi-
nite intersection of closed subschemes defined by certain Fitting ideals [14]. Moreover, 
Skjelnes mentions that proving a generalization of Gotzmann’s persistence theorem to 
modules would also prove that only one of those closed subschemes suffices to describe 
the embedding. We make this statement precise by showing the following consequence 
of Theorem A.

Theorem B. Let V be a projective and finitely generated module over a noetherian ring A. 
Let O⊕p

P(V ) denote the free sheaf of rank p on f : P(V ) → Spec(A) = S. Fix two integers 
n ≤ d, and let g : G → S denote the Grassmannian scheme parametrizing locally free 
rank n quotients of f∗O⊕p

P(V )(d). We let

0 −→ Rd −→ g∗f∗O⊕p
P(V )(d) −→ Ed −→ 0

denote the universal short exact sequence on the Grassmannian G, and let Ed+1 be the 
cokernel of the induced map Rd ⊗OG

g∗f∗OP(V )(1) → g∗f∗O⊕p
P(V )(d + 1). Then, we have 

that
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