

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Computing the signatures of subgroups of non-Euclidean crystallographic groups

ALGEBRA

Ismael Cortázar, Antonio F. Costa^{*,1}

Departamento de Matemáticas Fundamentales, Facultad de Ciencias, UNED, 28040 Madrid, Spain

ARTICLE INFO

Article history: Received 20 May 2016 Available online 21 January 2017 Communicated by Gerhard Hiss

MSC: 20H10 20H15 30F10

Keywords: Fuchsian groups Non-Euclidean crystallographic groups Signature

ABSTRACT

A (planar and cocompact) non-Euclidean crystallographic (NEC) group Δ is a subgroup of the group of, conformal and anti-conformal, isometries of the hyperbolic plane \mathbb{H}^2 such that \mathbb{H}^2/Δ is compact. NEC groups are classified algebraically by a symbol called signature. In this symbol there is a sign + or - and, in the case of sign +, some cycles of integers in the signature, called period-cycles, have an essential direction. In 1990 A.H.M. Hoare gave an algorithm to obtain the signature of a finite index subgroup of an NEC group. The process of Hoare fails in some cases in the task of computing the direction of period-cycles. In this work we complete the algorithm of Hoare, this allows us to construct a program for computing the signature of subgroups of NEC groups in all cases.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

A (planar) non-Euclidean crystallographic group Δ is a discrete subgroup of the group of (conformal and anti-conformal) isometries of the hyperbolic plane \mathbb{H}^2 . We shall con-

 $\ast\,$ Corresponding author.

E-mail addresses: icortazar3@gmail.com (I. Cortázar), acosta@mat.uned.es (A.F. Costa).

¹ The second author was partially supported by MTM2014-55812-P.

 $\label{eq:http://dx.doi.org/10.1016/j.jalgebra.2017.01.017} 0021-8693 @ 2017 Elsevier Inc. All rights reserved.$

sider only cocompact NEC groups, i.e. we assume that \mathbb{H}^2/Δ is compact. The algebraic structure of Δ is given by a symbol called signature (see [16,13]):

$$(g;\sigma;[m_1,...,m_r];\{(n_{11},...,n_{1s_1}),...,(n_{k1},...,n_{ks_k})\})$$

where g is the genus of the surface \mathbb{H}^2/Δ , $\sigma = +$ or - is the orientability character of \mathbb{H}^2/Δ , $[m_1, ..., m_r]$ is the set of branched indices (periods) of the covering $\mathbb{H}^2 \to \mathbb{H}^2/\Delta$ with values in interior points of \mathbb{H}^2/Δ , one period for each branched value, and the ordered sets (period-cycles) of branched indices: $(n_{11}, ..., n_{1s_1}), ..., (n_{k1}, ..., n_{ks_k})$, correspond to branched values in the k boundary components of \mathbb{H}^2/Δ .

Two signatures:

$$(g; \sigma; [m_1, ..., m_r]; \{(n_{11}, ..., n_{1s_1}), ..., (n_{k1}, ..., n_{ks_k})\})$$
$$(g'; \sigma'; [m'_1, ..., m'_r]; \{(n'_{11}, ..., n'_{1s_1}), ..., (n'_{k1}, ..., n'_{ks_k})\})$$

are considered equivalent if:

$$\begin{split} &1. \ g = g'; \ \sigma = \sigma'; \\ &2. \ r = r'; \ (m'_1, ..., m'_r) = (m'_{\varepsilon(1)}, ..., m'_{\varepsilon(r)}), \ \varepsilon \in \Sigma\{1, ..., r\}; \\ &3. \ k = k'; \ s_i = s'_{\delta(i)}, \ \delta \in \Sigma\{1, ..., k\}; \\ &4. \ \text{Let} \ \alpha = (1, ..., s_i) \in \Sigma\{1, ..., s_i\} \end{split}$$

• If
$$\sigma = \sigma' = +$$
, either:

a. For all i, $(n_{i1}, ..., n_{is_i}) = (n'_{\delta(i)\theta_i(1)}, ..., n'_{\delta(i)\theta_i(s_i)}), \theta_i = \alpha^{l_i}, 0 \le l_i \le s_i$, or b. For all i, $(n_{is_i}, ..., n_{i1}) = (n'_{\delta(i)\theta_i(1)}, ..., n'_{\delta(i)\theta_i(s_i)}), \theta_i = \alpha^{l_i}, 0 \le l_i \le s_i$.

• If $\sigma = \sigma' = -$, for each i, i = 1, ..., k, either:

a.
$$(n_{i1}, ..., n_{is_i}) = (n'_{\delta(i)\theta_i(1)}, ..., n'_{\delta(i)\theta_i(s_i)}), \ \theta_i = \alpha^{l_i}$$
 or
b. $(n_{is_i}, ..., n_{i1}) = (n'_{\delta(i)\theta_i(1)}, ..., n'_{\delta(i)\theta_i(s_i)}), \ \theta_i = \alpha^{l_i}.$

Following the terminology in [13]: in the orientable case ($\sigma = +$) corresponding pairs of period-cycles are all paired in the same way, all directly or all inversely. In the non-orientable case, some are paired directly and some inversely.

Two NEC groups are isomorphic if and only if they have equivalent signatures. Each NEC admits a canonical presentation, the geometrical type of the generators and the word expressions of relations of a canonical presentation is given by the signature.

If Γ is a finite index subgroup of Δ then Γ is also an NEC group. From a presentation of Δ and the action of the generators of such presentation on the cosets Δ/Γ , the Reidemeister–Schreier method, provides a non-canonical presentation of Γ . But to obtain the signature of Γ from a non-canonical presentation is not an easy task.

If $\Delta \leq \text{Isom}^+(\mathbb{H}^2)$ then we say that Δ is a Fuchsian group and there is a direct method of Singerman [14] to obtain the signature of a subgroup Γ of Δ . This method

Download English Version:

https://daneshyari.com/en/article/5771843

Download Persian Version:

https://daneshyari.com/article/5771843

Daneshyari.com