

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

The relation \leq on some elements of the affine Weyl

group \widetilde{C}_n

Jian-yi Shi

 $Department\ of\ Mathematics,\ East\ China\ Normal\ University,\ Shanghai,\ 200241,\\ PR\ China$

ARTICLE INFO

Article history: Received 24 June 2016 Available online 3 February 2017 Communicated by Shrawan Kumar

Keywords:
Affine Weyl group
The longest element
Left cell
Two-sided cell
Partition
Iterating star operations

ABSTRACT

Let (W,S) be the affine Weyl group of type \widetilde{C}_n with S its Coxeter generator set. Let $\overline{\Lambda}_{2n+1}$ be the set of all partitions $\lambda=(\lambda_1,...,\lambda_r)$ of 2n+1 such that $\sum_{j=1}^{2k+1}\lambda_j$ is odd for any $k\in\mathbb{N}$ with $2k+1\leqslant r$. For any $J\subsetneq S$, let w_J be the longest element in the parabolic subgroup of W generated by J. We define a map $\overline{\phi}:\{w_J\mid J\subsetneq S\}\longrightarrow \overline{\Lambda}_{2n+1}$ and study the preorder \leqslant on the set $\{w_J\mid J\subsetneq S\}$ and its relation with the LR partial order \leqslant on the set $\{\overline{\phi}(w_J)\mid J\subsetneq S\}$, where iterating star operations and primitive pairs play an important role. \odot 2017 Elsevier Inc. All rights reserved.

0. Introduction

In order to construct representations of a Coxeter group (W,S) and the associated Hecke algebra $\mathcal{H}(W)$, Kazhdan and Lusztig introduced certain preorder relation \leq and the corresponding equivalence relation $\underset{LR}{\sim}$ in W. The equivalence classes of W with

E-mail address: jyshi11@yahoo.com.

 $^{^{\}circ}$ Supported by the NSFC (11131001 and 11471115), Shanghai Key Laboratory of PMMP, and STCSM (13dz2260400).

respect to $\underset{LR}{\sim}$ are called two-sided cells and those cells provide representations of W and $\mathcal{H}(W)$ with certain good structural properties (see [2]). It is desirable (but difficult in general) to determine, for any $y, w \in W$, whether or not the relation $y \leqslant w$ holds. In the present paper, we consider the case where W is the affine Weyl group \widetilde{C}_n for any $n \geqslant 2$ and $y, w \in \{w_J \mid J \subsetneq S\}$, where w_J is the longest element in the subgroup W_J of \widetilde{C}_n generated by J. Let $\overline{\Lambda}_{2n+1}$ be the set of all partitions $(\lambda_1, \lambda_2, ..., \lambda_r)$ of 2n+1 for some $r \geqslant 1$ such that $\sum_{i=1}^{2k+1} \lambda_i$ is odd for every $k \in \mathbb{N}$. By Proposition 2.2, we define a map $\overline{\phi}: \{w_J \mid J \subsetneq S\} \longrightarrow \overline{\Lambda}_{2n+1}$. Then we study the preorder \leqslant on the set $\{w_J \mid J \subsetneq S\}$ and its relation with the partial order \leqslant on the set $\{\overline{\phi}(w_J) \mid J \subsetneq S\}$. The main results about these are Theorems 4.8–4.9 and Propositions 5.8–5.9. The crucial technical tools for our purpose are the iterating star operations on the elements of \widetilde{C}_n and the left primitive pairs, where the former are a certain generalization to \widetilde{C}_n of those introduced by the author in the case of the affine Weyl group $\widetilde{A}_l, l \geqslant 1$ (see [6, Chapter 8]), and the latter was introduced in [7, Subsection 3.3].

Let $\operatorname{Cell}(\widetilde{C}_n)$ be the set of all two-sided cells of \widetilde{C}_n . We define a map $\overline{\psi}:\widetilde{C}_n\longrightarrow\overline{\Lambda}_{2n+1}$ in 5.3 and propose a conjecture (i.e., Conjecture 5.4) that $\overline{\psi}$ induces an order-reversing bijection from the poset $(\operatorname{Cell}(\widetilde{C}_n), \leqslant)$ to $(\overline{\Lambda}_{2n+1}, \leqslant)$.

The contents are organized as follows. We collect some concepts, notation and known results in Section 1. Then in Section 2, we define the map $\overline{\phi}: \{w_J \mid J \subsetneq S\} \longrightarrow \overline{\Lambda}_{2n+1}$. We introduce the iterating star operations on elements of \widetilde{C}_n in Section 3. Then we describe the relation \leq on the set $\{w_J \mid J \subsetneq S\}$ in Sections 4–5.

1. Preliminaries

In the present section, we collect some concepts, notation and known results for later use.

1.1. Denote by \mathbb{Z} (respectively, \mathbb{N} , \mathbb{P}) the set of all integers (respectively, non-negative integers, positive integers). Denote $[k,n]:=\{k,k+1,...,n\}$ and [m]:=[1,m] for any $k\leqslant n$ in \mathbb{Z} and $m\in\mathbb{P}$. For a Coxeter group W=(W,S) with S its Coxeter generator set, let \leqslant be the Bruhat-Chevalley order and $\ell(w)$ the length function on W. Let $\mathcal{A}=\mathbb{Z}[u,u^{-1}]$ be the ring of all Laurent polynomials in an indeterminate u with integer coefficients. To each ordered pair $(y,w)\in W\times W$, Kazhdan and Lusztig associated some $P_{y,w}\in\mathbb{Z}[u]$ (now known as a Kazhdan-Lusztig polynomial), which satisfies the conditions: $P_{y,w}=0$ if $y\nleq w, P_{w,w}=1$, and $\deg P_{y,w}\leqslant (1/2)(\ell(w)-\ell(y)-1)$ if y< w (see [2]). For y< w in W, let $\mu(w,y)=\mu(y,w)$ be the coefficient of $u^{(1/2)(\ell(w)-\ell(y)-1)}$ in $P_{y,w}$. We denote y—w if $\mu(y,w)\neq 0$.

Checking the relation y—w for $y, w \in W$ usually involves very complicated computation of Kazhdan–Lusztig polynomials. But it becomes easy in some special case:

If
$$y < x$$
 in W satisfy $\ell(y) = \ell(x) - 1$, then $y - x$ with $\mu(x, y) = 1$. (1.1.1)

Download English Version:

https://daneshyari.com/en/article/5771854

Download Persian Version:

https://daneshyari.com/article/5771854

Daneshyari.com