## Accepted Manuscript

The recognition problem for table algebras and reality-based algebras

Allen Herman, Mikhail Muzychuk, Bangteng Xu


PII:
S0021-8693(17)30056-X
DOI: http://dx.doi.org/10.1016/j.jalgebra.2017.01.031
Reference:
YJABR 16091

To appear in: Journal of Algebra

Received date: 2 July 2015

Please cite this article in press as: A. Herman et al., The recognition problem for table algebras and reality-based algebras, $J$. Algebra (2017), http://dx.doi.org/10.1016/j.jalgebra.2017.01.031

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

# The recognition problem for table algebras and reality-based algebras 

Allen Herman, Mikhail Muzychuk ${ }^{\dagger}$ and Bangteng Xu<br>Submitted: July 1, 2015; Revised: January 4, 2017


#### Abstract

Given a finite-dimensional noncommutative semisimple algebra $A$ over $\mathbb{C}$ with involution, we show that $A$ always has a basis $\mathbf{B}$ for which $(A, \mathbf{B})$ is a reality-based algebra. For algebras that have a one-dimensional representation $\delta$, we show that there always exists an RBA-basis for which $\delta$ is a positive degree map. We characterize all RBA-bases of the 5 -dimensional noncommutative semisimple algebra for which the algebra has a positive degree map, and give examples of RBA-bases of $\mathbb{C} \oplus M_{n}(\mathbb{C})$ for which the RBA has a positive degree map, for all $n \geq 2$.


Key words: Table algebras, $C$-algebras, Reality-based algebras.
AMS Classification: Primary: 05E30; Secondary: 20C15.

## 1 Introduction

Let $A$ be a $(d+1)$-dimensional involutive algebra over $\mathbb{C}$, whose involution $*$ is a ring antiautomorphism that restricts to complex conjugation on scalars. We say that the pair $(A, \mathbf{B})$ is a reality-based algebra (or RBA) if there is a basis $\mathbf{B}=\left\{b_{0}, b_{1}, \ldots, b_{d}\right\}$ of $A$ such that
(i) the multiplicative identity of $A$ is an element of $\mathbf{B}$ (we index the elements of $\mathbf{B}$ so that $b_{0}$ is the multiplicative identity of $A$ );
(ii) $\mathbf{B}^{2} \subseteq \mathbb{R} \mathbf{B}$, in particular the structure constants $\lambda_{i j k}$ generated by the basis $\mathbf{B}$ in the expressions $b_{i} b_{j}=\sum_{k=0}^{d} \lambda_{i j k} b_{k}$ are all real numbers;
(iii) $\mathbf{B}^{*}=\mathbf{B}$, so $*$ induces a product of disjoint transpositions on the set $\{0,1, \ldots, d\}$ given by $b_{i^{*}}=\left(b_{i}\right)^{*}$ for all $b_{i} \in \mathbf{B}$;
(iv) $\lambda_{i j 0} \neq 0 \Longleftrightarrow j=i^{*}$; and

[^0]
# https://daneshyari.com/en/article/5771858 

Download Persian Version:

## https://daneshyari.com/article/5771858

## Daneshyari.com


[^0]:    *The author acknowledges the support of an NSERC Discovery Grant.
    ${ }^{\dagger}$ The author acknowledges the support of the Wilson Endowment of Eastern Kentucky University

