Journal of Algebra 479 (2017) 216–243

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Asymptotic properties of infinite directed unions of local quadratic transforms

Algebra

William Heinzer^a, Bruce Olberding^{b,*}, Matthew Toeniskoetter^a

^a Department of Mathematics, Purdue University, West Lafayette, IN 47907, United States

^b Department of Mathematical Sciences, New Mexico State University, Las Cruces, NM 88003-8001, United States

ARTICLE INFO

Article history: Received 25 September 2015 Available online 16 January 2017 Communicated by Bernd Ulrich

MSC: 13H05 13A15 13A18

Keywords: Regular local ring Local quadratic transform Valuation ring Complete integral closure Archimedean domain Generalized Krull domain

ABSTRACT

Let (R, \mathfrak{m}) be a regular local ring of dimension at least 2. For each valuation domain birationally dominating R, there is an associated sequence $\{R_n\}$ of local quadratic transforms of R. We consider the case where this sequence $\{R_n\}_{n\geq 0}$ is infinite and examine properties of the integrally closed local domain $S = \bigcup_{n>0} R_n$ in the case where S is not a valuation domain. For this sequence, there is an associated boundary valuation ring $V = \bigcup_{n\geq 0} \bigcap_{i\geq n} V_i$, where V_i is the order valuation ring of R_i . There exists a unique minimal proper Noetherian overring T of S. T is the regular Noetherian UFD obtained by localizing outside the maximal ideal of S and $S = V \cap T$. In the present paper, we define functions w and e, where w is the asymptotic limit of the order valuations and e is the limit of the orders of transforms of principal ideals. We describe V explicitly in terms of w and e and prove that V is either rank 1 or rank 2. We define an invariant τ associated to S that is either a positive real number or $+\infty$. If τ is finite, then S is archimedean and T is not local. In this case, the function w defines the rank 1 valuation overring W of V and W dominates S. The rational dependence of τ over $w(T^{\times})$ determines whether S is completely integrally closed and whether V has rank 1. We give examples where S is completely integrally closed. If τ is infinite, then S is nonarchimedean and T is local. In this case, the function e defines

* Corresponding author.

E-mail addresses: heinzer@purdue.edu (W. Heinzer), olberdin@nmsu.edu (B. Olberding), mtoenisk@purdue.edu (M. Toeniskoetter).

 $\label{eq:http://dx.doi.org/10.1016/j.jalgebra.2017.01.009\\0021-8693/ © 2017 Elsevier Inc. All rights reserved.$

the rank 1 valuation overring E of V. The valuation ring E is a DVR and E dominates T, and in certain cases we prove that E is the order valuation ring of T.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction and summary

Let (R, \mathfrak{m}) be a regular local ring and let $S = \bigcup_{n \ge 0} R_n$ be an infinite directed union of local quadratic transforms as in the abstract. In [11], the authors consider ideal-theoretic properties of the integral domain S. The ring S is local and integrally closed. Abhyankar proves in [1, Lemma 12, p. 337] that if dim R = 2, then S is a valuation domain. However, if dim $R \ge 3$, then S is no longer a valuation domain in general. In the case where dim $R \ge 3$, David Shannon examines properties of S in [21]. This motivates the following definition.

Definition 1.1. Let R be a regular local ring with dim $R \ge 2$ and let $\{R_n\}_{n\ge 0}$ be an infinite sequence of regular local rings, where $R = R_0$ and R_{n+1} is a local quadratic transform of R_n for each $n \ge 0$. Then $S = \bigcup_{n>0} R_n$ is a Shannon extension of R.

Let S be a Shannon extension of $R = R_0$ and let F denote the field of fractions of R. Associated to each of the regular local rings (R_i, \mathfrak{m}_i) , there is a rank 1 discrete valuation ring V_i defined by the order function ord_{R_i} , where for $x \in R_i$, $\operatorname{ord}_{R_i}(x) = \sup\{n \mid x \in \mathfrak{m}_i^n\}$. The family $\{V_i\}_{i=0}^{\infty}$ determines a unique set

$$V = \bigcup_{n \ge 0} \bigcap_{i \ge n} V_i = \{ a \in F \mid \operatorname{ord}_{R_i}(a) \ge 0 \text{ for } i \gg 0 \}.$$

The set V consists of the elements in F that are in all but finitely many of the V_i . In [11], the authors prove that V is a valuation domain that birationally dominates S, and call V the boundary valuation ring of the Shannon extension S.

In Section 2, we review the concept of the transform of an ideal, and in Sections 3 and 4, we discuss previous results on Shannon extensions. Theorem 3.2 describes an intersection decomposition $S = V \cap T$ of a Shannon extension S, where V is the boundary valuation of S and T is the intersection of all the DVR overrings of R that properly contain S. In Setting 3.3, we fix notation to use throughout the remainder of the paper. In Discussion 4.2, we describe conditions in order that S be a valuation domain.

In Section 5 we consider asymptotic behavior of the family $\{\operatorname{ord}_{R_n}\}_{n\geq 0}$ of order valuations of a Shannon extension $S = \bigcup_{n\geq 0} R_n$. For nonzero $a \in S$, we fix some n such that $a \in R_n$ and define $e(a) = \lim_{i\to\infty} \operatorname{ord}_{R_{n+i}}((aR_n)^{R_{n+i}})$, where $(aR_n)^{R_{n+i}}$ denotes the transform in R_{n+i} of the ideal aR_n . For nonzero elements $a, b \in S$, we define $e(\frac{a}{b}) = e(a) - e(b)$. In Lemmas 5.2 and 5.4, we prove the function e is well defined and that e describes factorization properties of elements in S. Download English Version:

https://daneshyari.com/en/article/5771861

Download Persian Version:

https://daneshyari.com/article/5771861

Daneshyari.com