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ARRANGEMENTS OF IDEAL TYPE

GERHARD RÖHRLE

Abstract. In 2006 Sommers and Tymoczko defined so called arrangements of ideal type
AI stemming from ideals I in the set of positive roots of a reduced root system. They
showed in a case by case argument that AI is free if the root system is of classical type or
G2 and conjectured that this is also the case for all types. This was established only very
recently in a uniform manner by Abe, Barakat, Cuntz, Hoge and Terao. The set of non-zero
exponents of the free arrangement AI is given by the dual of the height partition of the
roots in the complement of I in the set of positive roots, generalizing the Shapiro-Steinberg-
Kostant theorem which asserts that the dual of the height partition of the set of positive
roots gives the exponents of the associated Weyl group.

Our first aim in this paper is to investigate a stronger freeness property of the AI . We
show that all AI are inductively free, with the possible exception of some cases in type E8.

In the same paper from 2006, Sommers and Tymoczko define a Poincaré polynomial
I(t) associated with each ideal I which generalizes the Poincaré polynomial W (t) for the
underlying Weyl group W . Solomon showed that W (t) satisfies a product decomposition
depending on the exponents ofW for any Coxeter groupW . Sommers and Tymoczko showed
in a case by case analysis in type An, Bn and Cn, and some small rank exceptional types
that a similar factorization property holds for the Poincaré polynomials I(t) generalizing
the formula of Solomon for W (t). They conjectured that their multiplicative formula for
I(t) holds in all types. In our second aim to investigate this conjecture further, the same
inductive tools we develop to obtain inductive freeness of the AI are also employed. Here
we also show that this conjecture holds inductively in almost all instances with only a small
number of possible exceptions.
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1. Introduction

Much of the motivation for the study of arrangements of hyperplanes comes from Coxeter
arrangements. They consist of the reflecting hyperplanes associated with the reflections
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