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HOMOTOPY THEORY AND GENERALIZED DIMENSION

SUBGROUPS

SERGEI O. IVANOV, ROMAN MIKHAILOV, AND JIE WU

Abstract. Let G be a group and R,S, T its normal subgroups. There is a
natural extension of the concept of commutator subgroup for the case of three
subgroups ‖R,S, T‖ as well as the natural extension of the symmetric product
‖r, s, t‖ for corresponding ideals r, s, t in the integral group ring Z[G]. In this
paper, it is shown that the generalized dimension subgroup G ∩ (1 + ‖r, s, t‖)
has exponent 2 modulo ‖R,S, T‖. The proof essentially uses homotopy theory.
The considered generalized dimension quotient of exponent 2 is identified with
a subgroup of the kernel of the Hurewicz homomorphism for the loop space
over a homotopy colimit of classifying spaces.

1. Introduction

Let G be a group and Z[G] its integral group ring. Every two-sided ideal a in
the integral group ring Z[G] of a group G determines a normal subgroup

D(G,a) := G ∩ (1 + a)

of G. Such subgroups are called generalized dimension subgroups. The identification
of generalized dimension subgroups is a fundamental problem in the theory of group
rings. In general, given an ideal a, the identification of D(G,a) is very difficult, for
a survey on the problems in this area see [12], [16].

The idea that the generalized dimension subgroups are related to the kernels of
Hurewicz homomorphisms of certain spaces was discussed in [16], [17], however, in
the cited sources, all application of homotopical methods to the problems of group
rings were related to very special cases. In this paper, we apply homotopy theory for
a purely group-theoretical result of a more general type, namely to the description
of the exponent of generalized dimension quotient constructed for a triple of normal
subgroups in any group G.

Let G be a group and R,S its normal subgroups. Denote r = (R− 1)Z[G], s =
(S − 1)Z[G]. It is proved in [2] that

(1) D(G, rs+ sr) = [R,S].

The following question arises naturally: how one can generalize the result (1) to
the case of three or more normal subgroups of G. Our main result is the following.

Theorem 1. Let G be a group and R,S, T its normal subgroups. Denote

r = (R− 1)Z[G], s = (S − 1)Z[G], t = (T − 1)Z[G]
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