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Soergel bimodules

We consider twisted standard filtrations of Soergel bimodules
associated to arbitrary Coxeter groups and show that the
graded multiplicities in these filtrations can be interpreted as
structure constants in the Hecke algebra. This corresponds to
the positivity of the polynomials occurring when expressing an
element of the canonical basis in a generalized standard basis
twisted by a biclosed set of roots in the sense of Dyer, and
comes as a corollary of Soergel’s conjecture. We then show the
positivity of the corresponding inverse polynomials in the case
where the biclosed set is an inversion set of an element or its
complement by generalizing a result of Elias and Williamson
on the linearity of the Rouquier complexes associated to lifts
of these basis elements in the Artin-Tits group. These lifts
turn out to be generalizations of Mikado braids as introduced
in a joint work with Digne. This second positivity property
generalizes a result of Dyer and Lehrer from finite to arbitrary
Coxeter groups.
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1. Introduction

Let (W, S) be a Coxeter system with |S| < co. Let H be the corresponding Iwahori—
Hecke algebra over the ring Z[v, v—!] with standard basis {1}, } ey and costandard basis
{T;}l}wew. Denote by 7 the set of conjugates of the elements of S. In their seminal
paper of 1979 [19], Kazhdan and Lusztig introduced two canonical bases {Cy, } ey and
{C! }wew of H and related them to the representation theory of H and W. In the case
where W is a finite Weyl group, the canonical bases are closely related to the geometry of
Schubert varieties. Kazhdan and Lusztig conjectured that the coefficients of C!, expressed
in the standard basis are polynomials with nonnegative coefficients. These polynomials
became known as Kazhdan—Lusztig polynomials and are broadly studied in Lie theory,
representation theory and combinatorics (see for instance [2]| or [17] for introductions to
the topic).

While Kazhdan and Lusztig proved their positivity conjecture in 1980 in the case
where W is a finite or affine Weyl group [20] using geometric techniques, the general
case remained mysterious until recently. Soergel proposed [28,29] an approach allowing
one to replace the geometry involved in the Weyl group case by a remarkable additive
monoidal Krull-Schmidt category B of graded bimodules over a polynomial ring. These
bimodules, nowadays called Soergel bimodules, can be defined for an arbitrary Coxeter
system and provide a categorification of (the canonical basis {C}, },ew of) H. In this
framework, Soergel formulated a purely algebraic conjecture implying Kazhdan—TLusztig’s
positivity conjecture in full generality [29] and proved it for finite Weyl groups, using
again geometry but suggesting the existence of an algebraic proof. Soergel’s conjecture
was proven by Elias and Williamson in [14].

More precisely, indecomposable Soergel bimodules are indexed (up to graduation shifts
and isomorphism) by the elements of WW. Denote by { By, }wew the family of (unshifted)
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